FACULTY OF EDUCATION
 Department of
 Curriculum and Pedagogy

Mathematics Number: Percents

Science and Mathematics Education Research Group

Shopping with Percents

Shopping with Percents I

25\% increase

\$ 400

\$???

A local computer store receives its stock for $\$ 400$ per computer. The store marks up this price by 25%. What is the listed price of the computer before tax?
A. \$ 100
B. \$ 425
C. $\$ 450$
D. \$ 475
E. \$ 500

Solution

Answer: E

Justification: A 25\% increase means an additional 0.25 times the original price must be paid.

$$
\$ 400+(\$ 400 \times 0.25)=\$ 400+\$ 100=\$ 500
$$

A 25% percent increase also means the same as paying 125% of the original price.

$$
\$ 400 \times 1.25=\$ 500
$$

Note that a 25% increase does not mean you only pay 25% the original price.

Shopping with Percents II

Two computer stores each have a promotion on their computers.
Best Purchase: 10\% off all computers today!
Future Store: You pay 90% of the price, we'll pay the rest!
If the computer you want to purchase has the same listed price in both stores, where should you buy your computer?
A. Best Purchase
B. Future Store
C. The price will be the same in both stores

Solution

Answer: C

Justification: A 10\% off sale is the same as only paying for 90%. Consider a computer that costs $\$ 100$.

Best Purchase:

$$
\begin{aligned}
& 10 \% \text { of } \$ 100=\$ 10 \\
& (10 \% \text { off } \$ 100)=\$ 100-(10 \% \text { of } \$ 100)=\$ 90
\end{aligned}
$$

Future Store:

$$
90 \% \text { of } \$ 100=\$ 100 \times 0.90=\$ 90
$$

Shopping with Percents III

Kevin wants to buy the computer listed for $\$ 500$. The computer happens to be on sale for 10% off. After the discount, the price is increased by 10% due to tax. The final amount that Kevin has to pay will be:
A. Greater than $\$ 500$
B. Equal to $\$ 500$
C. Less than $\$ 500$

Solution

Answer: C

Justification: A 10\% discount on \$500 means Kevin only pays for 90% of $\$ 500$.

$$
0.90 \times \$ 500=\$ 450 \text { (decrease of } \$ 50 \text {) }
$$

A 10\% tax increase means Kevin plays for 110\% of the discounted price.
$1.10 \times \$ 450=\$ 495$ (increase of $\$ 45$)
The 10% discount was applied to $\$ 500$ while the 10% increase was applied to $\$ 450$.

Shopping with Percents IV

In the previous question, Kevin paid $\$ 495$ on an item that was first discounted by 10%, followed by a tax increase of 10%.

If the $\$ 500$ item was first increased 10% by tax, followed by a 10% discount, the final price Kevin has to pay will be:
A. Greater than $\$ 495$
B. Equal to $\$ 495$
C. Less than $\$ 495$

Solution

Answer: B

Justification: The amount Kevin has to pay will be exactly the same. Note:
$0.90 \times \$ 500=\$ 450$ (decrease of $\$ 50$)
$1.10 \times \$ 450=\$ 495$ (increase of $\$ 45$)
is the same as
$1.10 \times \$ 500=\$ 550$ (increase of $\$ 50$)
$0.90 \times \$ 550=\$ 495$ (decrease of $\$ 55$)

Shopping with Percents V

If an item's price is increased by 10% then decreased by 10% (or decreased first and then increased), what percent of the original do you have to pay for?
A. 90%
B. 99%
C. 100\%
D. 101\%
E. 110\%

Solution

Answer: B

Justification: Assume an item costs \$100. For a 10\% increase you multiply the cost by 1.1. For a 10% decrease you multiply the cost by 0.9 .

$$
\$ 100 \times 1.1 \times 0.9=\$ 100 \times 0.9 \times 1.1=\$ 99
$$

Therefore you actually pay for 99% of the original price.

