a place of mind

FACULTY OF EDUCATION
Department of
Curriculum and Pedagogy

Mathematics
 Shape and Space: Measurement (Calendar)

Science and Mathematics Education Research Group

Measurement: Calendar

March 2011							
SUN	MON	TUES	WED	THURS	FRI	SAT	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30	31			

Measurement: Calendar

	March 2011						
	SUN	MON	TUES	WED	THURS	FRI	SAT
			1	2	3	4	5
	6	7	8	9	10	11	12
Today's date is	13	14	15	16	17	18	19
$\begin{gathered} \text { March } 17^{\text {th }}, \\ 2011 \end{gathered}$	20	21	22	23	24	25	26
	27	28	29	30	31		

Measurement: Calendar I

How many days are there in a week?
A. 8
B. 6
C. 5
D. 7

Solution

Answer: D

Justification: There are seven days in a week

1. Sunday
2. Monday
3. Tuesday
4. Wednesday
5. Thursday
6. Friday
7. Saturday

Measurement: Calendar II

How many months are there in a year?
A. 10
B. 9
C. 12
D. 13

Solution

Answer: C

Justification: There are 12 months in a year.

\author{

1. January
 2. February
 3. March
 4. April
 5. May
 6. June
}
2. July
3. August
4. September
5. October
6. November
7. December

Measurement: Calendar III

How many days are there in a year?

A. 7
B. 30
C. 52
D. 90
E. 356

Solution

Answer: E

Justification: There are 365 days in a calendar year. This is the length of time it takes for the earth to revolve around the sun.

There are 7 days in a week, and 52 weeks in a year.
$7 \times 52=364$.
There are 4 seasons in a year. Each season is approximately 90 days long.
$4 \times 90=360$.
There are 12 months in a year. 7 months are 31 days, 4 are 30 days, and 1 is 28 days long.
$(7 \times 31)+(4 \times 30)=28=217+120+28=365$.

Measurement: Calendar IV

How many weeks are there in a year?

A. 4
B. 12
C. 30
D. 52

Solution

Answer: D

Justification: Since the year is 365 days long (leap year 366) the number of weeks in a year is 365 divided by 7 days in a week, which is just over 52.

It is 52 weeks and one day for a regular year, and 52 weeks and two days for a leap year.
This explains why the day of the week that your birthday falls on changes each year.

Alternative Solution

Answer: D

Justification: There are just over four weeks in a month, but not quite four and a half. There are 12 months in a year.
$4 \times 12=48$
$4 \frac{1}{2} \times 12=54$
Because there are more than four weeks in a month, but less than $41 / 2$, we know the number of weeks must be between 48 and 54.

Extend Your Learning：Activity

Day of the Week

Ever wonder what day you were born on？Well，you can find out with this neat little script．Simply type your date of birth in the box below，and it will tell ya＇．．．honest！

Zeller＇s Algorithm can be used to determine the day of the week for any date in the past，present or future，for any dates between 1582 and 4902.

To use this algorithm，input your date of birth，press＂ok＂and then boom the day of the week in which you were born on appears．

Zeller＇s Algorithm
Month：February＊

Day： 12 ＊

Measurement: Calendar V

In which list are the days of the week listed in the correct order?

A	B	C	D
Monday	Sunday	Sunday	Monday
Tuesday	Monday	Monday	Tuesday
Wednesday	Tuesday	Tuesday	Wednesday
Friday	Wednesday	Wednesday	Thursday
Thursday	Thursday	Thursday	Saturday
Saturday	Friday	Saturday	Friday
Sunday	Saturday	Friday	Sunday

Solution

Answer: B

Sunday

 Monday Tuesday Wednesday Thursday Friday Saturday| The Days of the Week. - Les jours de la semaine. | | | | |
| :--- | :--- | :--- | :--- | :--- |
| \# French | Pronunciation | English | Origin | |
| 1 | lundi | luhodee | Monday | Moon |
| 2 | mardi | mahrdee | Tuesday | Mars |
| 3 | mercredi | maircruhdee | Wednesday | Mercury |
| 4 | jeudi | juhdee | Thursday | Jupiter |
| 5 | vendredi | vahdruhdee | Friday | Venus |
| 6 | samedi | sahmdee | Saturday | Saturn |
| 7 | dimanche | deemahsh | Sunday | Sun |

Measurement: Calendar VI

What days are missing from this week?

Monday, Tuesday, Wednesday, Thursday, Friday

A. Saturday, Sunday, Monday
B. Saturday, Sunday
C. Friday, Saturday
D. Sunday, Monday, Tuesday
E. None

Solution

Answer: B

Justification: Only the weekdays are listed, so we must add in the weekend! Saturday and Sunday make up the weekend.

Sunday Monday

Tuesday
Wednesday Thursday with Sunday, not Monday.

Measurement: Calendar VII

Which day of the week comes after Saturday?
A. Monday
B. Friday
C. Sunday
D. Thursday

January 2013							
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30	31			

Solution

Answer: C

Justification: Saturday is the last day of the week. Sunday is the first day of the week.

January 2013							
sunday	MONDAY	tuesday	wednesday	thursday	frday	saturday	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30	31			

Measurement: Calendar VIII

Two days ago was Monday, tomorrow will be
A. Sunday
B. Wednesday
C. Thursday
D. Tuesday

Solution

Answer: C

Justification: If two days ago was Monday, that makes today Wednesday. Therefore, tomorrow will be Thursday.

Monday
Tuesday Wednesday Thursday

Friday

Saturday

Measurement: Calendar IX

Identify which months of the year are in the correct order:

A	B	C	D
January	September	September	January
February	October	October	February
March	November	November	March
April	December	January	April
June	January	December	May
May	March	February	June
July	April	March	July
August	May	May	August
October	June	April	September
November	July	June	October
December	August	July	November
September	February	August	December

Solution

Answer: D Justification:

January	Jully
February	August
March September	
April	October
May	November
June	December

Measurement: Calendar X

What months are missing to complete the year? January, March, April, May, July, August,

September, December

A. February, June, November
B. October, February, June
C. February, June, October, November
D. February, May, June, October, November
E. None

Solution

Answer: C

January	Junly
February	August
March	September
April	October
May	November
June	December

Measurement: Calendar XI

It is currently June. The month before is \qquad , the month after is \qquad .
A. March and August
B. July and August
C. May and August
D. May and July

Solution

Answer: D
Justification: MONTHS OF THE YEAR
JANUARY
FEBRUARY
MARCH
APRIL
MAY
BEFORE JUNE
JULY AFTER
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

Measurement: Calendar XII

What is the date, today? (green box on calendar)

A. June $11^{\text {th }}, 2013$
B. June $12^{\text {th }}, 2013$
C. July $12^{\text {th }}, 2013$
D. June $13^{\text {th }}, 2013$

June 2013							
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
30						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	

Solution

Answer: B

Justification: At the top of the calendar, we can see that it is labeled as "June 2013."

Looking at the coloured date, we know the date is the $12^{\text {th }}$.
Putting it all together, we get June $12^{\text {th }}, 2013$.

Measurement: Calendar XIII

If today is coloured in green, What is the date tomorrow?
A. June $24^{\text {th }}, 2013$
B. June $23{ }^{\text {rd }}, 2013$
C. June $25^{\text {th }}, 2013$
D. July $25^{\text {th }}, 2013$

June 2013							
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
2						1	
9	3	4	5	6	7	8	
16	17	11	12	13	14	15	
23	24	25	26	27	28	29	

Solution

Answer: C

Justification: Today is

 June $24^{\text {th }}, 2013$. The next day will be one higher, in the same month and year. June 25 ${ }^{\text {th }}, 2013$| June 2013 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | |
| 30 | | | | | | 1 | |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 | |

Measurement: Calendar XIV

Today is highlighted in green. What was the date, yesterday?
A. June $20^{\text {th }}, 2013$
B. July $19^{\text {th }}, 2013$
C. June $21^{\text {st }}, 2013$
D. June $19^{\text {th }}, 2013$

June 2013							
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	

Solution

Answer: D

Justification: Today is

 June 20h, 2013.Yesterday's date will be one less, but in the same month and year. June 19 th, 2013

June 2013							
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
30						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	

Measurement: Calendar XV

Today is June $12^{\text {th }}, 2013$
Two days from now will be.....
A. June $10^{\text {th }}, 2013$
B. July $11^{\text {th }}, 2013$
C. June $12^{\text {th }}, 2013$
D. June $13^{\text {th }}, 2013$
E. June $14^{\text {th }}, 2013$

Solution

Answer: E

Justification: Today is June $12^{\text {th }}, 2013$. To get the date two days from now, we must add 2 to today's date.
$12+2=14$
Since it is still the same month and year, we get June 14 ${ }^{\text {th }}, 2013$

Measurement: Calendar XVI

Yesterday was June 11 ${ }^{\text {th }}$, 2013

Tomorrow will be.....
A. June $10^{\text {th }}, 2013$
B. July $12^{\text {th }}, 2013$
C. June $12^{\text {th }}, 2013$
D. July $13^{\text {th }}, 2013$
E. June $13^{\text {th }}, 2013$

Solution

Answer: E

Justification: Yesterday was June $11^{\text {th }}$, which makes today June $12^{\text {th }}$, therefore, tomorrow will be June $13^{\text {th }}$.

Measurement: Calendar XVII

Today is Wednesday, June $12^{\text {th }}, 2013$ In one week it will be \qquad .
A. June $18^{\text {th }}, 2013$
B. July $19^{\text {th }}, 2013$
C. June $21^{\text {st }}, 2013$
D. June 19 th, 2013

Solution

Answer: D

Justification: There are seven days in a week.

Adding $12+7=19$.
It is still June, 2013
Therefore, next week, it will be June 19th, 2013.

JUNE 2013						
SUN	MON	TUE	WED	THU	FRI	SAT
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30						

Measurement: Calendar XVIII

Today is Wednesday, June $12^{\text {th }}, 2013$ In nine days it will be \qquad .
A. Wednesday, June $19^{\text {th }}, 2013$
B. Tuesday, June $18^{\text {th }}, 2013$
C. Friday, June $21^{\text {st, }} 2013$
D. Thursday, June $20^{\text {th }}, 2013$
E. Thursday, June 21st, 2013

Solution

Answer: C

Justification: 9 days is one week and 2 days.

We know that one week from today is June 19 ${ }^{\text {th }}, 2013$.

Adding 2 days, we get June 21 ${ }^{\text {st, }} 2013$.

JUNE 2013

SUN	MON	TUE	WED	THU	FRI	SAT
						1
2	3	4	5	6	7	8
9	10	11	12		14	15
16	17	18	19	20	2	22
23	24	25	26	27	28	29
30						

Measurement: Calendar XIX

The days of the week are listed in the correct order.
Which of the following sets is shorter than a week?
A. Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, Monday
B. Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
C. Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
D. Sunday, Monday, Tuesday, Wednesday, Thursday, Friday

Solution

Answer: D

Justification: A week has seven days. A and B each have more than seven days. C has exactly seven days listed. D is the only one with fewer than seven days.

Measurement: Calendar XX

Which time span is longer than a week?
A. Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
B. Wednesday, Thursday, Friday, Saturday, Sunday, Monday, Tuesday, Wednesday
C. Thursday, Friday, Saturday, Sunday, Monday, Tuesday, Wednesday
D. Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Solution

Answer: B

Justification: There are 7 days in a week.
Group A and C have exactly 7 days.
Group D has 6 days.
Group B has 8 days, which is longer than a week.

Measurement: Calendar XXI

In the northern hemisphere what season includes the longest day of the year?
A. Spring
B. Fall
C. Winter
D. Summer

Southern Hemisphere

Solution

Answer: D

Justification: For the northern hemisphere the longest day of the year comes during the summer solstice, typically near June 21/22 for the northern hemisphere. This is the first day of Summer.

After this day daylight decreases, leading up to the winter solstice, around December 21, at which point the days begin to get longer again. This is the first day of Winter.

Measurement: Calendar XXII

In the southern hemisphere what season includes the shortest day of the year?
A. Spring
B. Fall
C. Winter
D. Summer

Southern Hemisphere

Solution

Answer: D

Justification: In the southern hemisphere the shortest day of the year is during the winter season. This takes place near June $21^{\text {st }}$.

In the southern hemisphere, the seasons are opposite from those in the northern hemisphere.

See this Link for more information.

Measurement: Calendar XXV

In a leap year, what month of the year includes the leap day?
A. December
B. January
C. September
D. February

SUN	MON	TUE	WED	THU	FRI	SAT
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29			

Solution

Answer: D

Justification: February is the month of the year which includes a leap day.

FEBRUARY 2012

SUN	MON	TUE	WED	THU	FRI	SAT
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29			

Measurement: Calendar XXVI

Kwame was born on February 29th, 2004.
If today's date is March 1, 2013, how many times has Kwame celebrated his birthday on February 29 ${ }^{\text {th }}$?

Solution

Answer: D

Justification: Kwame would have had 2 'actual' birthdays on February $29^{\text {th }}$. Leap years occur every four years.

2004, 2008, and 2012 were leap years. Since Kwame was born in 2004 he has celebrated twice on February 29 ${ }^{\text {th }}$.

