a place of mind

Chemistry

Stoichiometry: Mole Ratios

Science and Mathematics Education Research Group

Mole Ratios

Mole Ratios I

How many moles of H atoms are in a mole of $\mathrm{H}_{2} \mathrm{O}$ molecules?
A. 1 mol H
B. 2 mol H
C. 2.0 mol H
D. 2.0 g H
E. None of the above

Solution

Answer: B

Justification: For every molecule of water, there are 2 hydrogen atoms. Thus, for every mole of water, there are 2 moles of hydrogen atoms.

The answer is not C because ratios don't have significant figures. For example, it isn't possible for there to be 2.2 hydrogen atoms for every molecule of water. Thus a decimal is not needed.

Mole Ratios II

What mole ratio would you use when calculating how many moles of Hydrogen atoms are in 4.0 g of acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$?

$$
\begin{array}{ll}
\text { A. } \frac{3 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}} & \\
\text { B. } \frac{1 \mathrm{~mol} \mathrm{CH}}{3} \mathrm{CO}_{2} \mathrm{H} & \text { D. } \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{40.1 \mathrm{~g}}
\end{array}
$$

Solution

Answer: E

Justification: The answer could not be A or C because there are in total 4 hydrogen atoms in 1 molecule of acetic acid. Thus, for 1 mole of acetic acid, there would be 4 moles of hydrogen.

The answer is not B because that is the molar mass of acetic acid, not the mole ratio that the question was looking for.

Finally, the answer was not D, because the mole ratio is in the wrong orientation to cancel out the units properly.

$$
4.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{60.1 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}} \times \frac{4 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}
$$

Mole Ratios III

$\mathrm{H}_{2} \mathrm{CrO}_{4}+\mathrm{AgNO}_{3} \rightarrow \quad \mathrm{Ag}_{2} \mathrm{CrO}_{4}+\quad \mathrm{HNO}_{3}$ 59.0 g 169.9 g 165.9 g 63.0 g

The masses of all the reactants and products in
A. $0.5 \mathrm{~mol} / 1.5 \mathrm{~mol} / 1.0 \mathrm{~mol} / 1.0 \mathrm{~mol}$ the above equation are shown. How many moles of each reactant and product are used/made?
B. $0.5 \mathrm{~mol} / 1.0 \mathrm{~mol} / 1.0 \mathrm{~mol} / 0.5 \mathrm{~mol}$
C. $0.5 \mathrm{~mol} / 1.0 \mathrm{~mol} / 0.5 \mathrm{~mol} / 1.0 \mathrm{~mol}$
D. $1.0 \mathrm{~mol} / 1.0 \mathrm{~mol} / 1.0 \mathrm{~mol} / 1.0 \mathrm{~mol}$
E. None of the above

Solution

Answer: C

Justification: To calculate the number of moles of a substance you need to use molar mass to convert the mass of the substance to the number of moles of the substance.

For $\mathrm{H}_{2} \mathrm{CrO}_{4}$, the calculation would be:

$$
59.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{118.0 \mathrm{~g}}=0.5 \mathrm{~mol}
$$

Continued on next slide...

Solution

Answer: C
Justification: The moles of the rest of the reactants and products are thus:
$\mathrm{H}_{2} \mathrm{CrO}_{4}+\mathrm{AgNO}_{3} \rightarrow \quad \mathrm{Ag}_{2} \mathrm{CrO}_{4}+\quad \mathrm{HNO}_{3}$
$59.0 \mathrm{~g} \quad 169.9 \mathrm{~g}$
165.9 g
63.0 g
$118.0 \mathrm{~g} / \mathrm{mol}$
$169.9 \mathrm{~g} / \mathrm{mol}$
$331.8 \mathrm{~g} / \mathrm{mol} \quad 63.0 \mathrm{~g} / \mathrm{mol}$
0.5 mol
1.0 mol
0.5 mol
1.0 mol

Mole Ratios IV

$\mathrm{H}_{2} \mathrm{CrO}_{4}+\mathrm{AgNO}_{3} \rightarrow \quad \mathrm{Ag}_{2} \mathrm{CrO}_{4}+\quad \mathrm{HNO}_{3}$ $0.5 \mathrm{~mol} \quad 1 \mathrm{~mol}$
 0.5 mol
 1 mol

What is the mole ratio between AgNO_{3} and $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
A. $1 \mathrm{~mol} \mathrm{AgNO}_{3} / 0.5 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
B. $2 \mathrm{~mol} \mathrm{AgNO}_{3} / 1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
C. $1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4} / 2 \mathrm{~mol} \mathrm{AgNO}_{3}$
D. All of the above
E. None of the above

Solution

Answer: D

Justification: The reaction started with 1 mole AgNO_{3} which produced 0.5 moles of AgCrO_{4}.

All of the answers given present some form of a 2:1 ratio which is the correct ratio between the reactant and the product.

Mole Ratios V

$\mathrm{H}_{2} \mathrm{CrO}_{4}+\mathrm{AgNO}_{3} \rightarrow \quad \mathrm{Ag}_{2} \mathrm{CrO}_{4}+$ $0.5 \mathrm{~mol} \quad 1 \mathrm{~mol}$ 0.5 mol
 HNO_{3}
 1 mol

Knowing the amount of moles of each reactant and product, what coefficients would you use to balance the above equation?
A. $0.5 / 1 / 0.5 / 1$
B. $1 / 2 / 1 / 2$
C. $3 / 6 / 3 / 6$
D. All of the above
E. None of the above

Solution

Answer: B

Justification: All of the given answers show the correct ratios between the reactants and products. B is the best solution however because the coefficients have been reduced to the lowest whole number ratio.

On occasion it is permissible to use a fraction over 2 (ex. 13/2) as a coefficient to prevent the other coefficients in the equation from getting very large.

Mole Ratios VI

$$
\mathrm{Rb}+\mathrm{S}_{8} \rightarrow \mathrm{Rb}_{2} \mathrm{~S}
$$

Balance the above equation.
What is the mole ratio between S_{8} and Rb ?
A. $1 \mathrm{~mol} \mathrm{Rb} / 8 \mathrm{~mol} \mathrm{~S} 8$
B. $16 \mathrm{~mol} \mathrm{Rb} / 8 \mathrm{~mol} \mathrm{~S}_{8}$
C. $1 \mathrm{~mol} \mathrm{~S}_{8} / 16 \mathrm{~mol} \mathrm{Rb}$
D. $1 \mathrm{~mol}_{8} / 2 \mathrm{~mol} \mathrm{Rb}$
E. B and D

Solution

Answer: C

Justification: The balanced chemical equation is shown below with the coefficients of $16 / 1 / 8$.

The answer is not A because the equation would have been balanced incorrectly to get that ratio.

The answer is not B, D, or E because the subscript 8 in S_{8} is not part of the mole ratio between the two reactants. Rather, it tells you that there are 8 atoms of S in 1 molecule of S_{8}. Only the coefficients are part of the mole ratio.

The mole ratio between S_{8} and Rb is thus 16 mol of Rb for every 1 mol of S_{8}.

$$
16 \mathrm{Rb}+1 \mathrm{~S}_{8} \rightarrow 8 \mathrm{Rb}_{2} \mathrm{~S}
$$

Mole Ratios VII

$$
\mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \quad \mathrm{H}_{3} \mathrm{BO}_{3}
$$

Balance the above equation.
If 14.0 g of $\mathrm{B}_{2} \mathrm{O}_{3}$ was used, what would the calculation look like to determine the amount of moles of $\mathrm{H}_{3} \mathrm{BO}_{3}$ that would be produced?
A. $14.0 \mathrm{~g} \times \frac{2 \mathrm{~mol}}{1 \mathrm{~mol}}$
C. $14.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{69.6 \mathrm{~g}} \times \frac{2 \mathrm{~mol}}{3 \mathrm{~mol}}$
B. $14.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{61.8 \mathrm{~g}} \times \frac{2 \mathrm{~mol}}{1 \mathrm{~mol}}$
D. $14.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{69.6 \mathrm{~g}} \times \frac{1 \mathrm{~mol}}{2 \mathrm{~mol}}$
E. None of the above

Solution

Answer: E

Justification: Based on the balanced chemical equation, the mole ratio between $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$ was a 1:2 ratio.

$$
\mathrm{B}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}
$$

Thus C is incorrect since the mole ratio that it used was 3:2.
The remaining answers had some combination of the mole ratios and the molar masses of $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$. It was easy to mix up what compound each mole ratio and molar mass referred to because the compounds were not explicitly stated in the calculation.

Continued on next slide...

Solution

Answer: E

Justification:

The correct calculation needed to convert:
g of $\mathrm{B}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{~mol}$ of $\mathrm{B}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{BO}_{3}$
$14.0 \mathrm{~g} \mathrm{~B}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol}_{2} \mathrm{O}_{3}}{69.6 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{O}_{3}}$

Good Practice Tip: To prevent mixing up which term refers to either the reactant or the product, it is a good idea to write which compound you are referring to in each step.

Mole Ratios VIII

$\mathrm{Sb}_{2} \mathrm{~S}_{3}+$
 $\mathrm{O}_{2} \rightarrow \quad \mathrm{Sb}_{2} \mathrm{O}_{3}+$

Balance the above equation.

How many liters of oxygen would you need (at STP) to react to produce 30.0 g of $\mathrm{Sb}_{2} \mathrm{O}_{3}$?
A. 10.4 L
B. $3.02 \times 10^{3} \mathrm{~L}$
C. 672 L
D. 0.512 L
E. None of the above

Solution

Answer: A
Justification: The correct balanced equation is shown below:

$$
2 \mathrm{Sb}_{2} \mathrm{~S}_{3}+9 \mathrm{O}_{2} \rightarrow 2 \mathrm{Sb}_{2} \mathrm{O}_{3}+6 \mathrm{SO}_{2}
$$

The correct calculation needed to convert:

$$
\mathrm{g} \text { of } \mathrm{Sb}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{~mol} \text { of } \mathrm{Sb}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{~mol} \text { of } \mathrm{O}_{2} \longrightarrow \mathrm{~L} \text { of } \mathrm{O}_{2}
$$

The conversion factors that you need to achieve these steps are as follows:
$30.0 \mathrm{~g} \mathrm{Sb}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Sb}_{2} \mathrm{O}_{3}}{291.5 \mathrm{~g}} \times \frac{9 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Sb}_{2} \mathrm{O}_{3}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{O}_{2}}$

