

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Transformation of Functions

Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2014

Transformation of Functions

Summary of Transformations

Vertical Translation	Horizontal Translation
g(x) = f(x) + k	g(x) = f(x-k)
k > 0, translate up	k > 0, translate right
k < 0 translate down	k < 0 translate left
Reflection across x-axis	Reflection across y-axis
g(x) = -f(x)	g(x) = f(-x)
y-values change sign	x-values change sign
Vertical stretches	Horizontal stretches
$g(x) = k \cdot f(x)$	$g(x) = f\left(\frac{x}{k}\right)$
k > 1, expansion	k > 1, expansion
0 < k < 1 compression	0 < k < 1 compression

Standard Functions

You should be comfortable with sketching the following functions by hand:

Note on Terminology

This question set uses the following definitions for horizontal and vertical stretches:

Vertical stretches: $g(x) = k \cdot f(x)$ k > 1, expansion 0 < k < 1 compression Horizontal stretches: $g(x) = f\left(\frac{x}{k}\right)$ k > 1, expansion 0 < k < 1 compression

For example, a vertical stretch by a factor of 0.5 is a compression, while a stretch by a factor of 2 is an expansion.

Other resources might say "a vertical compression by a factor of 2," implying that the reciprocal must be taken to determine the stretch factor.

Transformations on Functions

- The graph to the right shows the function $f(x) = x^2$ after two transformations are applied to it. Which one of the following describe the correct transformations applied to f?
- A. Horizontal translation -6 units, vertical translation -8 units
- B. Horizontal translation 6 units, vertical translation 8 units
- C. Horizontal translation 3 units, vertical translation 4 units
- D. Horizontal translation -3 units, vertical translation -4 units

Answer: A

Justification: Consider the point (0,0) from $y = x^2$. It is easiest to determine how the vertex has been translated. The new vertex is located at (-6, -8).

Moving the function 6 units to the left corresponds to a *horizontal translation by -6 units*.

Moving 8 units down corresponds to vertical translation by -8 units.

Transformations on Functions II

The graph shown represents the equation $y = x^2$ after it has been translated 6 units to the left and 8 units down.

What is the equation of this function?

A.
$$g(x) = (x+6)^2 + 8$$

B.
$$g(x) = (x+6)^2 - 8$$

C.
$$g(x) = (x-6)^2 + 8$$

- D. $g(x) = (x-6)^2 8$
- E. None of the above

Answer: B

- **Justification:** We begin with the base equation of $f(x) = y = x^2$
- Recall that for horizontal translations, we replace x with x-k. For vertical translations, we replace y with y-k.
- Apply each substitution to the base equation to determine the final equation:

$y = x^2$	Base equation
y = (x - (-6))	
$y = (x+6)^2$	translation by -6 units (left)
$y - (-8) = (x + 6)^2$	Replace y with $y - (-8)$; vertical
$y = (x+6)^2 -$	$_{-8}$ translation by -8 units (down)
$g(x) = (x+6)^2 -$	-8 Recall: the transformed function is labelled g

Transformations on Functions III

The function $f(x) = \sqrt{x}$ is translated to form g(x) (red). What is the equation of g(x)?

A. $g(x) = \sqrt{x+4} + 5$

$$B. \quad g(x) = \sqrt{x+5} + 4$$

$$C. \quad g(x) = \sqrt{x-4} + 5$$

- D. $g(x) = \sqrt{x+5} 4$
- E. None of the above

Answer: A

Justification: Determine where the point (0, 0) in $f(x) = \sqrt{x}$ gets translated. This point is now located at (-4, 5). This is a horizontal translation by -4 units (left), and vertical translation by 5 units (up). Note: The order that the translations are applied does not matter.

$$f(x) = y = \sqrt{x}$$
 Base equation

$$y = \sqrt{x - (-4)}$$
 Replace x with x - (-4)

$$y - 5 = \sqrt{x + 4}$$
 Replace y with y - 5

$$g(x) = \sqrt{x + 4} + 5$$

Transformations on Functions IV

The function $f(x) = x^3$ is first reflected in the x-axis, and then translated as shown.

What is the equation of the new function, g(x)?

A.
$$g(x) = (x-2)^3 + 1$$

B. $g(x) = -(x-2)^3 - 1$
C. $g(x) = -(x-2)^3 + 1$
D. $g(x) = (-x-2)^3 + 1$
E. $g(x) = (-x+2)^3 + 1$

Answer: C

Justification: Recall that reflections across the x-axis require replacing y with -y. Use the point (0, 0) on the graph $y = x^3$ in order to determine how cubic functions are translated.

Perform the substitutions:

 $f(x) = y = x^3$ Base equation $-y = x^3$ Replace y with -y $y = -x^3$ $y = -(x-2)^3$ $y = -(x-2)^3$ Replace x with x-2; translate 2 units right $y - 1 = -(x-2)^3$ Replace y with y - 1; translate 1 unit up $g(x) = -(x-2)^3 + 1$

Transformations on Functions V

The function $f(x) = x^2$ is first reflected in the x-axis and then translated 4 units right and 6 units up to give g(x).

Would the resulting function be different if it were translated first, and then reflected in the x-axis?

A. Yes

B. No

Answer: A

Justification: Draw the graph of g(x) if translations were done first before the reflection and compare with the given graph:

Instead of finishing 6 units up, g(x) was translated 6 units down.

Alternative Solution

Answer: A

Justification: Determine the equation of g(x) if the translation substitutions are done first before the reflection.

 $f(x) = y = x^2$ Base equation $y = (x-4)^2$ Replace x with x-4; translate 4 units right $y-6 = (x-4)^2$ Replace y with y-6; translate 6 units up $-y = (x-4)^2 + 6$ Replace y with -y; reflection in the x-axis $g(x) = -(x-4)^2 - 6$

Since the reflection was done after translating 6 units up, the negative sign from the reflection also changes the sign of the vertical translation. Compare this to the original equation:

$$g(x) = -(x-4)^2 + 6$$

Transformations on Functions VI

The function $f(x) = \ln(x)$ is reflected in the y-axis, and then translated left 2 units and up 4 units. Which of the following sets of transformations will result in the same function as the transformations outlined above?

- A. Translate up 4 units, translate left 2 units, reflect in y-axis
- B. Translate up 4 units, translate right 2 units, reflect in y-axis
- C. Translate down 4 units, translate left 2 units, reflect in y-axis
- D. Translate down 4 units, translate right 2 units, reflect in y-axis
- E. More than 1 of the above are correct

(Notice that the reflection is done after the translations)

Answer: B Translate up 4 units, translate right 2 units, reflect in y-axis

Justification: Notice that when a y-axis reflection is done at the after a horizontal translation, the direction of the translation also gets reflected.

Example:

The next slide shows how making the transformation substitutions into the equations results in the same function.

Solution Continued

Answer: B Translate up 4 units, translate right 2 units, reflect in y-axis

Justification: First find the equation of the function we are trying to match: $f(x) = y = \ln(x)$ Base equation

$$y = \ln(-x)$$

$$y = \ln[-(x - (-2))]$$

$$y = \ln[-(x - (-2))]$$

$$y = \ln[-(x + 2)]$$

$$g(x) = \ln[-x - 2] + 4$$

Replace x with $-x$; reflect in y-axis
Replace x with $x - (-2)$; 2 units left
Replace y with $y - 4$; 4 units up

If the reflection is done at the end:

$$y = \ln(x)$$

$$y - 4 = \ln(x)$$

$$y = \ln(x-2) + 4$$

$$y = \ln[(-x)-2] + 4$$

$$y = \ln[(-x-2] + 4$$

$$y = \ln[-x-2] + 4$$

Replace x with x-2; 2 units right
Replace x with -x; reflect in y-axis

$$y = \ln[-x-2] + 4$$

Transformations on Functions VII

The graph $f(x) = \sqrt{1-x^2}$ is shown in red. It is then reflected in the x-axis, reflected in the yaxis, and translated to the right by 1 unit. Which graph represents f(x) after these transformations?

- A. Blue graph
- B. Green graph
- C. Purple graph
- D. Orange graph
- E. None of the graphs

Answer: D

Justification: The transformations can be performed as shown in the graph below. Notice that reflection in y-axis has no effect on the graph, since the graph has a line of symmetry across the y-axis.

The factor of -1 from the reflection in yaxis is inside a square, and therefore does not change the function. All the equations below are equivalent:

$$g(x) = -\sqrt{1 - (-(x-1))^2}$$
$$= -\sqrt{1 - (-x+1)^2}$$
$$= -\sqrt{1 - (x-1)^2}$$

Transformations on Functions VIII

The function $f(x) = x^3 - x^2 + x - 1$ is reflected in the x-axis, and then reflected in the y-axis. What is the equation of the resulting function, g(x)?

A.
$$g(x) = x^{3} - x^{2} + x - 1$$

B. $g(x) = -x^{3} + x^{2} - x + 1$
C. $g(x) = x^{3} - x^{2} + x + 1$
D. $g(x) = -x^{3} - x^{2} - x + 1$
E. $g(x) = x^{3} + x^{2} + x + 1$

Answer: E

Justification: Perform the transformation substitutions:

$$f(x) = y = x^{3} - x^{2} + x - 1$$

- y = x³ - x² + x - 1
y = -x³ + x² - x + 1
y = -(-x)³ + (-x)² - (-x) + 1
g(x) = x³ + x² + x + 1

Base equation Replace *y* with -y; reflect in x-axis Move the negative from left to right Replace *x* with -x; reflect in y-axis

Remember than $(-x)^n$ is positive when *n* is even, negative when *n* is odd.

Transformations on Functions IX

The function $f(x) = x^3$ is expanded horizontally by a factor of 2. It is then translated horizontally by -2 units. What is the equation of this function?

A.
$$g(x) = 8(x+2)^3$$

B. $g(x) = \frac{1}{8}(x+2)^3$
C. $g(x) = (2x+2)^3$
D. $g(x) = \left(\frac{1}{2}x+2\right)^3$
E. $g(x) = (2x+4)^3$

Answer: B

Justification: Recall that for horizontal stretches by a factor of *k*, we replace *x* with $\frac{x}{k}$.

Base equation

Replace x with $\frac{x}{2}$; horizontal stretch by 2

Replace x with x - (-2); shift left by 2

We can then take the denominator out by cubing it

Transformations on Functions X

The function $f(x) = \sqrt{4 - (x+1)^2}$ is shown in red. It is then stretched vertically by 2, and horizontally by 0.5. Which is the correct resulting graph?

A. Blue graph

- D. Orange graph
- E. None of the graphs

Answer: B

Justification: A vertical stretch by 2 multiplies all y-values by 2. A horizontal stretch by 0.5 divides all x-values by 2.

Correct: Note how (-3, 0) moves to (-1.5, 0) and (1, 0) moves to (0.5, 0). The graph is scaled correctly.

Incorrect: Even though the graph is scaled correctly, notice how the point (1, 0) incorrectly moves to (0, 0)

Transformations on Functions XI

The two functions f(x)and $g(x) = a \cdot f(bx)$ are shown to the right.

What are values of *a* and *b*?

A. a = -1, b = 2B. a = -1, $b = \frac{1}{2}$ C. a = 2, b = -1D. $a = \frac{1}{2}$, b = -1E. a = -2, b = 1

Answer: A

Justification: Pick a few test points on f(x) and note how they are transformed: 1. $(-3, 0) \rightarrow (-1.5, 0)$ 3. $(1, -1) \rightarrow (0.5, 1)$

2.
$$(-1,-1) \rightarrow (0.5,1)$$
 4. $(2,-3) \rightarrow (1,3)$

Since the x-coordinates are reduced by a half and the y-coordinates change signs, the transformations are:

Reflection across x-axis

Horizontal compression by 0.5.

$$g(x) = -1 \cdot f(2x)$$

$$a = -1, \quad b = 2$$

Transformations on Functions XII

The point P(a, b) is on the function f(x). If g(x) = 2f(1-x)+3, where is point P on g(x)?

- A. (-a-1, 2b+3)
- B. (-a-1, -2b+3)
- C. (-a+1, 2b+3)
- D. (-a+1, -2b+3)
- E. None of the above

Answer: C

Justification: It may be helpful to write g(x) as: g(x) = 2f(1-x)+3= 2f(-(x-1))+3

Work backwards from the transformation substitutions to determine the transformations applied to f(x):

Vertical expansion by 2g(x) = 2f(x)g(x) = 2f(x)Reflection in y-axisg(x) = f(-x)= 2f(-x)Translate 3 units upg(x) = f(x) + 3= 2f(-x) + 3Translate 1 unit rightg(x) = f(x-1)= 2f(-(x-1)+3)

The point P(a, b) will then be located at (-a+1, 2b+3).