a place of mind

Mathematics
 Transformation of Functions

Science and Mathematics Education Research Group

Transformation of Functions

Summary of Transformations

Vertical Translation

$g(x)=f(x)+k$
$\mathrm{k}>0$, translate up
k < 0 translate down
Reflection across x-axis
$g(x)=-f(x)$
y-values change sign
Vertical stretches
$g(x)=k \cdot f(x)$
$k>1$, expansion
$0<k<1$ compression

Horizontal Translation
$g(x)=f(x-k)$
$\mathrm{k}>0$, translate right
$\mathrm{k}<0$ translate left
Reflection across y-axis
$g(x)=f(-x)$
x-values change sign
Horizontal stretches
$g(x)=f\left(\frac{x}{k}\right)$
$k>1$, expansion
$0<k<1$ compression

Standard Functions

You should be comfortable with sketching the following functions by hand:

$$
f(x)=e^{x}
$$

Note on Terminology

This question set uses the following definitions for horizontal and vertical stretches:

$$
\begin{aligned}
& \text { Vertical stretches: } \\
& g(x)=k \cdot f(x) \\
& \mathrm{k}>1 \text {, expansion } \\
& 0<\mathrm{k}<1 \text { compression }
\end{aligned}
$$

For example, a vertical stretch by a factor of 0.5 is a compression, while a stretch by a factor of 2 is an expansion.
Other resources might say "a vertical compression by a factor of 2," implying that the reciprocal must be taken to determine the stretch factor.

Transformations on Functions

The graph to the right shows the function $f(x)=x^{2}$ after two transformations are applied to it. Which one of the following describe the correct transformations applied to f ?
A. Horizontal translation -6 units, vertical translation -8 units
B. Horizontal translation 6 units, vertical translation 8 units
C. Horizontal translation 3 units, vertical translation 4 units
D. Horizontal translation -3 units,
 vertical translation -4 units

Solution

Answer: A
Justification: Consider the point $(0,0)$ from $y=x^{2}$. It is easiest to determine how the vertex has been translated. The new vertex is located at $(-6,-8)$.

Moving the function 6 units to the left corresponds to a horizontal translation by -6 units.
Moving 8 units down corresponds to vertical translation by -8 units.

Transformations on Functions II

The graph shown represents the equation $y=x^{2}$ after it has been translated 6 units to the left and 8 units down.

What is the equation of this function?
A. $g(x)=(x+6)^{2}+8$
B. $g(x)=(x+6)^{2}-8$
C. $g(x)=(x-6)^{2}+8$
D. $g(x)=(x-6)^{2}-8$
E. None of the above

Solution

Answer: B

Justification: We begin with the base equation of $f(x)=y=x^{2}$
Recall that for horizontal translations, we replace x with $x-k$. For vertical translations, we replace y with $y-k$.

Apply each substitution to the base equation to determine the final equation:

$$
\begin{aligned}
y & =x^{2} \\
y & =(x-(-6))^{2} \\
y & =(x+6)^{2} \\
y-(-8) & =(x+6)^{2} \\
y & =(x+6)^{2}-8 \\
g(x) & =(x+6)^{2}-8
\end{aligned}
$$

Base equation
Replace x with $x-(-6)$; horizontal translation by -6 units (left)

Replace y with $y-(-8)$; vertical translation by -8 units (down)

Recall: the transformed function is labelled g

Transformations on Functions III

The function $f(x)=\sqrt{x}$ is translated to form $g(x)$ (red). What is the equation of $g(x)$?
A. $g(x)=\sqrt{x+4}+5$
B. $g(x)=\sqrt{x+5}+4$
C. $g(x)=\sqrt{x-4}+5$
D. $g(x)=\sqrt{x+5}-4$
E. None of the above

Solution

Answer: A

Justification: Determine where the point $(0,0)$ in $f(x)=\sqrt{x}$ gets translated. This point is now located at $(-4,5)$. This is a horizontal translation by -4 units (left), and vertical translation by 5 units (up). Note: The order that the translations are applied does not matter.

$$
\begin{aligned}
f(x) & =y=\sqrt{x} & & \text { Base equation } \\
y & =\sqrt{x-(-4)} & & \text { Replace } x \text { with } x-(-4) \\
y-5 & =\sqrt{x+4} & & \text { Replace } y \text { with } y-5 \\
g(x) & =\sqrt{x+4}+5 & &
\end{aligned}
$$

Transformations on Functions IV

The function $f(x)=x^{3}$ is first reflected in the x-axis, and then translated as shown.

What is the equation of the new function, $g(x)$?
A. $g(x)=(x-2)^{3}+1$
B. $g(x)=-(x-2)^{3}-1$
C. $g(x)=-(x-2)^{3}+1$
D. $g(x)=(-x-2)^{3}+1$
E. $g(x)=(-x+2)^{3}+1$

Solution

Answer: C

Justification: Recall that reflections across the x-axis require replacing y with $-y$. Use the point $(0,0)$ on the graph $y=x^{3}$ in order to determine how cubic functions are translated.

Perform the substitutions:

$$
\begin{aligned}
f(x) & =y=x^{3} \\
-y & =x^{3} \\
y & =-x^{3} \\
y & =-(x-2)^{3} \\
y-1 & =-(x-2)^{3} \\
g(x) & =-(x-2)^{3}+1
\end{aligned}
$$

Base equation
Replace y with $-y$

Replace x with $x-2$; translate 2 units right
Replace y with $y-1$; translate 1 unit up

Transformations on Functions V

The function $f(x)=x^{2}$ is first reflected in the x-axis and then translated 4 units right and 6 units up to give $g(x)$.

Would the resulting function be different if it were translated first, and then reflected in the x-axis?
A. Yes
B. No

Solution

Answer: A

Justification: Draw the graph of $g(x)$ if translations were done first before the reflection and compare with the given graph:

Base graph

Translate 4 right; 6 up

Reflect across x axis

Instead of finishing 6 units up, $g(x)$ was translated 6 units down.

Alternative Solution

Answer: A

Justification: Determine the equation of $g(x)$ if the translation substitutions are done first before the reflection.

$$
\begin{aligned}
f(x) & =y=x^{2} \\
y & =(x-4)^{2} \\
y-6 & =(x-4)^{2} \\
-y & =(x-4)^{2}+6 \\
g(x) & =-(x-4)^{2}-6
\end{aligned}
$$

Base equation
Replace x with $x-4$; translate 4 units right
Replace y with $y-6$; translate 6 units up
Replace y with $-y$; reflection in the x-axis

Since the reflection was done after translating 6 units up, the negative sign from the reflection also changes the sign of the vertical translation. Compare this to the original equation:

$$
g(x)=-(x-4)^{2}+6
$$

Transformations on Functions VI

The function $f(x)=\ln (x)$ is reflected in the y-axis, and then translated left 2 units and up 4 units. Which of the following sets of transformations will result in the same function as the transformations outlined above?
A. Translate up 4 units, translate left 2 units, reflect in y-axis
B. Translate up 4 units, translate right 2 units, reflect in y-axis
C. Translate down 4 units, translate left 2 units, reflect in y-axis
D. Translate down 4 units, translate right 2 units, reflect in y-axis
E. More than 1 of the above are correct
(Notice that the reflection is done after the translations)

Solution

Answer: B Translate up 4 units, translate right 2 units, reflect in y-axis Justification: Notice that when a y-axis reflection is done at the after a horizontal translation, the direction of the translation also gets reflected.

Example:

$$
\begin{gathered}
(1,0) \xrightarrow{4 \text { units up }}(1,4) \xrightarrow{2 \text { units right }}(3,4) \xrightarrow{\text { Reflect } y \text {-axis }}(-3,4) \\
\text { Reflect } y \text {-axis }(-1,0) \longrightarrow(-1,4) \longrightarrow \text { units up } \\
(1,0) \longrightarrow(-3,4)
\end{gathered}
$$

The next slide shows how making the transformation substitutions into the equations results in the same function.

Solution Continued

Answer: B Translate up 4 units, translate right 2 units, reflect in y-axis Justification: First find the equation of the function we are trying to
match: $f(x)=y=\ln (x)$

$$
\begin{aligned}
y & =\ln (-x) \\
y & =\ln [-(x-(-2))] \\
y-4 & =\ln [-(x+2)] \\
g(x) & =\ln [-x-2]+4
\end{aligned}
$$

Base equation
Replace x with $-x$; reflect in y-axis
Replace x with $x-(-2) ; 2$ units left
Replace y with $y-4 ; 4$ units up

If the reflection is done at the end:

$$
\begin{aligned}
y & =\ln (x) \\
y-4 & =\ln (x) \\
y & =\ln (x-2)+4 \\
y & =\ln [(-x)-2]+4 \\
y & =\ln [-x-2]+4
\end{aligned}
$$

Replace y with $y-4 ; 4$ units up
Replace x with $x-2$; 2 units right
Replace x with $-x$; reflect in y-axis

Transformations on Functions VII

The graph $f(x)=\sqrt{1-x^{2}}$ is shown in red. It is then reflected in the x-axis, reflected in the y axis, and translated to the right by 1 unit. Which graph represents $f(x)$ after these transformations?
A. Blue graph
B. Green graph

C. Purple graph

D. Orange graph \square
E. None of the graphs

Solution

Answer: D
Justification: The transformations can be performed as shown in the graph below. Notice that reflection in y-axis has no effect on the graph, since the graph has a line of symmetry across the y-axis.

The factor of -1 from the reflection in y axis is inside a square, and therefore does not change the function. All the equations below are equivalent:

$$
\begin{aligned}
g(x) & =-\sqrt{1-(-(x-1))^{2}} \\
& =-\sqrt{1-(-x+1)^{2}} \\
& =-\sqrt{1-(x-1)^{2}}
\end{aligned}
$$

Transformations on Functions VIII

The function $f(x)=x^{3}-x^{2}+x-1$ is reflected in the x-axis, and then reflected in the y-axis. What is the equation of the resulting function, $g(x)$?
A. $g(x)=x^{3}-x^{2}+x-1$
B. $g(x)=-x^{3}+x^{2}-x+1$
C. $g(x)=x^{3}-x^{2}+x+1$
D. $g(x)=-x^{3}-x^{2}-x+1$
E. $g(x)=x^{3}+x^{2}+x+1$

Solution

Answer: E
Justification: Perform the transformation substitutions:

$$
\begin{aligned}
f(x) & =y=x^{3}-x^{2}+x-1 \\
-y & =x^{3}-x^{2}+x-1 \\
y & =-x^{3}+x^{2}-x+1 \\
y & =-(-x)^{3}+(-x)^{2}-(-x)+1 \\
g(x) & =x^{3}+x^{2}+x+1
\end{aligned}
$$

Base equation
Replace y with $-y$; reflect in x-axis Move the negative from left to right
Replace x with $-x$; reflect in y-axis

Remember than $(-x)^{n}$ is positive when n is even, negative when n is odd.

Transformations on Functions IX

The function $f(x)=x^{3}$ is expanded horizontally by a factor of 2 . It is then translated horizontally by -2 units. What is the equation of this function?
A. $g(x)=8(x+2)^{3}$
B. $g(x)=\frac{1}{8}(x+2)^{3}$
C. $g(x)=(2 x+2)^{3}$
D. $g(x)=\left(\frac{1}{2} x+2\right)^{3}$
E. $g(x)=(2 x+4)^{3}$

Solution

Answer: B
Justification: Recall that for horizontal stretches by a factor of k, we replace x with $\frac{x}{k}$.

$$
\begin{aligned}
& f(x)=y=x^{3} \quad \text { Base equation } \\
& y=\left(\frac{x}{2}\right)^{3} \\
& y=\left(\frac{x-(-2)}{2}\right)^{3} \quad \text { Replace } x \text { with } x-(-2) \text {; shift left by } 2 \\
& g(x)=\frac{(x+2)^{3}}{8} \\
& \text { We can then take the denominator out by } \\
& \text { cubing it }
\end{aligned}
$$

Transformations on Functions X

The function $f(x)=\sqrt{4-(x+1)^{2}}$ is shown in red. It is then stretched vertically by 2 , and horizontally by 0.5 . Which is the correct resulting graph?
A. Blue graph
B. Green graph

C. Purple graph

C. Purple graph \square
D. Orange graph \square
E. None of the graphs

Solution

Answer: B

\square
Justification: A vertical stretch by 2 multiplies all y-values by 2. A horizontal stretch by 0.5 divides all x-values by 2 .

Correct: Note how $(-3,0)$ moves to $(-1.5,0)$ and $(1,0)$ moves to $(0.5,0)$. The graph is scaled correctly.

Incorrect: Even though the graph is scaled correctly, notice how the point $(1,0)$ incorrectly moves to $(0,0)$

Transformations on Functions XI

The two functions $f(x)$ and $g(x)=a \cdot f(b x)$ are shown to the right.

What are values of a and b ?
A. $a=-1, \quad b=2$
B. $\quad a=-1, \quad b=\frac{1}{2}$
C. $a=2, \quad b=-1$
D. $\quad a=\frac{1}{2}, \quad b=-1$
E. $\quad a=-2, \quad b=1$

Solution

Answer: A

Justification: Pick a few test points on $f(x)$ and note how they are transformed: 1. $(-3,0) \rightarrow(-1.5,0) \quad 3 . \quad(1,-1) \rightarrow(0.5,1)$
2. $(-1,-1) \rightarrow(0.5,1) \quad$ 4. $(2,-3) \rightarrow(1,3)$

Since the x-coordinates are reduced by a half and the y-coordinates change signs, the transformations are:

Reflection across x-axis
Horizontal compression by 0.5 .

$$
\begin{aligned}
& g(x)=-1 \cdot f(2 x) \\
& a=-1, \quad b=2
\end{aligned}
$$

Transformations on Functions XII

The point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ is on the function $f(x)$. If $g(x)=2 f(1-x)+3$, where is point P on $g(x)$?
A. $(-a-1,2 b+3)$
B. $(-a-1,-2 b+3)$
C. $(-a+1,2 b+3)$
D. $(-a+1,-2 b+3)$
E. None of the above

Solution

Answer: C
Justification: It may be helpful to write $g(x)$ as: $g(x)=2 f(1-x)+3$

$$
=2 f(-(x-1))+3
$$

Work backwards from the transformation substitutions to determine the transformations applied to $f(x)$:

Vertical expansion by $2 g(x)=2 f(x) \quad g(x)=2 f(x)$
Reflection in y-axis
Translate 3 units up
$g(x)=f(-x)$

$$
=2 f(-x)
$$

$g(x)=f(x)+3$

$$
=2 f(-x)+3
$$

Translate 1 unit right

$$
g(x)=f(x-1)
$$

$$
=2 f(-(x-1)+3
$$

The point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ will then be located at $(-a+1,2 b+3)$.

