

Department of Curriculum and Pedagogy

Mathematics Inverse Functions

Science and Mathematics Education Research Group

Inverse Functions

Definition: One-to-one

A function f is *one-to-one* if it does not map two different values in its domain to the same value in its range.

Knowing whether a function is one-to-one will become important when trying to find inverse functions. While you may not need to know the definition of one-to-one, you need to know how to determine if the inverse of a function is also a function.

Definition: Inverse Function

Suppose the function f maps x to f(x) as shown.

The inverse of f, denoted f^{-1} , undoes the mapping of f.

If the point (a, b) belongs to f, then the point (b, a) must belong to f^{-1} .

A function and its inverse have the property that:

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$

Definition: Vertical Line Test

test

Make sue you are familiar with functions before trying to learn about inverse functions.

Review: In order to test if a given graph represents a function, we can use the vertical line test on the graph.

Imagine drawing a vertical line through the graph. If this vertical line intersects the graph at two different points, then the graph does not represent a function.

Inverse Functions I

How many of the following are one-to-one functions?

_	
Λ	\sim
/\	
$\overline{}$	\ <i>\</i> \ <i>\</i>

B. 1

C. 2

D. 3

E. 4

X	A(x)
1	1
2	2
3	3
4	4
5	5

X	C(x)
3	1
3	2
3	3
3	4
3	5

X	B(x)
1	3
2	3
3	3
4	3
5	3

X	D(x)
1	1
2	1
3	3
4	3
5	4

Answer: B

Justification: Function A always maps x to a different value. Since A(x) is unique for all x, the function is one-to-one.

Function B always maps x to the same value, 3, so it is not one-to-one.

"Function C" is not a function because x = 3 maps to 5 different values. Therefore, it cannot be a one-to-one function.

Function D is not one-to-one because both x = 3 and x = 4 map to 3.

Inverse Functions II

How many of the following are one-to-one functions?

B. 1

 C_{-} 2

D. 3

E. 4

Answer: B

Justification: A function is not one-to-one if 2 different values of x map to the same value. This means that if 2 points lie on the same horizontal line, the function is not one-to-one:

Functions B and D fail the horizontal line test. This means that at least two different points lie on the same horizontal line.
These functions are not one-to-one

Graph C is not a function since one value of x maps to 2 different values. This graph fails the vertical line test.

Inverse Functions III

Suppose the points (a, f(a)) and (b, f(b)) belong to a one-to-one function.

If f(a) = f(b), what can be concluded about the relationship between a and b?

- A. a = b
- B. $a \neq b$
- C. a = b = 0
- D. f(a) = f(b) is not possible for one to one functions
- E. Nothing can be concluded about a and b

Answer: A

Justification: Recall that for one-to-one functions, no two x in the domain can map to the same value in the range. If f(a) = f(b) this means that both x = a and x = b map to the same value.

In order for this to be possible, we must conclude that a = b, otherwise the function f is not one-to-one. The points (a, f(a)) and (b, f(b)) are the same point.

This fact is used to show that equations are one-to-one. If we assume that f(a) = f(b) for two values a and b in the domain of f and show that a = b, then the function is one-to-one.

Extend Your Learning: Examples

Assume that f(a) = f(b) for a and b in the domain of f.

Example 1: f(x) = 2x + 1

$$f(a) = f(b)$$

$$2a+1=2b+1$$

$$2a = 2b$$

$$a = b$$

Since it was shown that a = b, the function is one-to-one.

Example 2: $f(x) = x^2$

$$f(a) = f(b)$$
$$a^{2} = b^{2}$$
$$a = \pm b$$

Since it may not be the case that a = b, the function is not one-to-one.

Inverse Functions IV

How many of the following are one-to-one functions?

$$A(x) = -2x + 1$$

$$B(x) = 3x^2 - 2x + 1$$

$$C(x) = x^3 - 1$$

$$D(x) = 2|x| + 1$$

Answer: C

Justification: See the previous examples to show that function A is one-to-one and function B is not one to one.

Determine if function C and D are one-to-one:

$$C(x) = x^{3} - 1$$
 $D(x) = 2|x| + 1$
 $C(a) = C(b)$ $D(a) = D(b)$
 $a^{3} - 1 = b^{3} - 1$ $2|a| + 1 = 2|b| + 1$
 $a^{3} = b^{3}$ $|a| = |b|$
 $a = b$ $a = \pm b$

Function C is one-to-one

Function D is not one-to-one

Alternative Solution

Answer: C

Justification: Alternatively you can graph each function and use the horizontal line test. This approach is often faster if you know the general shape of each function.

Functions A and C pass the horizontal line test, so they are one-to-one.

Inverse Functions V

Which of the following is the correct inverse function of f ?

Answer: A

Justification: The inverse function f^{-1} maps values of f(x) back

to x.

Rearranging this as a function of x gives:

Inverse Functions VI

If the point (a, a+1) lies on the function f, which point lies on f^{-1} ?

A.
$$(a, a-1)$$

B.
$$(a-1, a)$$

C.
$$(a, a+1)$$

D.
$$(a+1, a)$$

E. None of the above

Answer: D

Justification: If the point (a, a+1) lies on function f, this means that x = a was mapped to f(a) = a + 1.

The inverse function must then map x = a + 1 to $f^{-1}(a + 1) = a$.

The point (a+1, a) lies on f^{-1} .

Notice how the x and y coordinates of a function are interchanged in its inverse function.

Inverse Functions VII

The domain of function f is x > 0 and its range is all real numbers. What is the domain and range of f^{-1} ?

	Domain	Range
A.	x > 0	All reals
В.	All reals	y > 0
C.	x > 0	y > 0
D.	All reals	All reals
E.	x < 0	All reals

Consider the functions $f(x) = \ln(x)$ and its inverse $f^{-1}(x) = e^x$.

The domain of $f(x) = \ln(x)$ is x > 0, while its range is all real numbers.

Answer: B

Justification: Recall the x and y values for each point of a function and its inverse interchange. This means the domain and range of a function and its inverse interchange.

Since the domain of f is x > 0, the range of f^{-1} is y > 0. Likewise, the range of f is all real numbers, so the domain of f^{-1} is all real numbers.

Solution cont'd

Consider the graphs of $f(x) = \ln(x)$ and $f^{-1}(x) = e^x$. The domain and range of these two functions are the same as those asked in this

question.

Domain: x > 0

Range: All real numbers

Domain: All real numbers

Range: y > 0

Inverse Functions VIII

Suppose that function f multiplies a number by 2, then adds one to it. Which of the following correctly describes its inverse?

- A. Subtract 1, then divide by 2
- B. Divide by 2, then subtract 1
- C. Add 1, then divide by 2
- D. Divide by 2, then add 1
- E. Either A or B

Answer: A

Justification: The inverse function must undo the effects of the original function. Suppose x is put into function f. The value x will then be mapped to f(x) = 2x + 1. This function has the property that it will map $f^{-1}(x)$ back to x:

$$f(f^{-1}(x)) = x$$

$$2(f^{-1}(x)) + 1 = x \text{ since } f(x) = 2x + 1$$

$$f^{-1}(x) = \frac{1}{2}(x - 1) \text{ solve for } f^{-1}(x)$$

Following order of operations, we must first subtract one from the input then divide by 2.

Solution Continued

Answer: A

Justification: A quick short cut to finding the inverse of a function is letting y = f(x), interchanging x and y, and then solving for y as a function of x.

$$f(x) = 2x+1$$

$$y = 2x+1 \quad \text{let } y = f(x)$$

$$x = 2y+1 \quad \text{interchang } x \text{ and } y$$

$$2y = x-1 \quad \text{solve for } y$$

$$y = \frac{1}{2}(x-1)$$

$$f^{-1}(x) = \frac{1}{2}(x-1)$$

Compare this solution with the previous one to see why we can interchange the x and y.

Inverse Functions IX

What is the inverse of the following function shown below?

A

В

C.

D

Answer: C

Justification: Find points on the original function, then interchange the x and y coordinates.

Solution Cont'd

Answer: C

Justification: The inverse of a function is the reflection across the line y = x because all x and y values interchange.

Answer A reflected the graph in the x-axis, answer B reflected the graph in the y-axis, and answer D reflected the graph in both the

x and y axis.

Inverse Functions X

What is the inverse of the following function shown below?

A.

В.

C.

D

Answer: B

Justification: Reflect the graph across the line y = x to find the

inverse.

$$f(x) = 3\log_2 x$$

$$--- f^{-1}(x) = 2^{\frac{x}{3}}$$

Note: It is not necessary to know the equations of the graphs shown to determine the inverse of a graph.

Inverse Functions XI

What is the inverse of the following function shown below?

A

B.

C.

D

Answer:

Justification: This function is symmetric across the line y = x and so a reflection across the line y = x does not change the function. This function and its inverse are the same.

$$--- f(x) = \frac{1}{x-1} + 1$$
$$--- f^{-1}(x) = \frac{1}{x-1} + 1$$

$$f^{-1}(x) = \frac{1}{x-1} + 1$$

Inverse Functions XII

Of the four functions shown, which has an inverse that is not a function?

Answer: D

Justification: Only functions that are one-to-one have an inverse that is also a function.

Since function D fails the horizontal line test (see question 2), it is not one-to-one and therefore its inverse is not a function.

Solution Continued

The 4 graphs shown are the inverses of those in this question.

The inverse of graph D is the only graph that fails the vertical line test, so it is not a function.

To determine if the inverse of a function is a function. use the horizontal line test on the original function, or the vertical line test on the inverse.

Inverse Functions XIII

Consider $f(x) = \sin(x)$ only for $-\pi/2 \le x \le \pi/2$. What is the inverse of f?

Note the different axes.

Answer: B

Justification: Both answers A and B have the correct shape for f^{-1} .

$$f(x) = \sin(x)$$

$$f^{-1}(x) = \sin^{-1}(x)$$

Answers A and B differ by the labels on the x-axis and y-axis. Since the domain of f is $-\pi/2 \le x \le \pi/2$ and its range is $-1 \le y \le 1$, the domain of f^{-1} must be $-1 \le x \le 1$ and the range is $-\pi/2 \le y \le \pi/2$.

Note: The domain of $f(x) = \sin(x)$ is restricted so that f^{-1} is a function. The sine function is normally not one-to-one.