a place of mind

Mathematics Inverse Functions

Science and Mathematics Education Research Group

Inverse Functions

Definition: One-to-one

A function f is one-to-one if it does not map two different values in its domain to the same value in its range.
Knowing whether a function is one-to-one will become important when trying to find inverse functions. While you may not need to know the definition of one-to-one, you need to know how to determine if the inverse of a function is also a function.

Definition: Inverse Function

Suppose the function f maps x to $f(x)$ as shown.

The inverse of f, denoted f^{-1}, undoes the mapping of f.

If the point (a, b) belongs to f, then the point (b, a) must belong to f^{-1}.

A function and its inverse have the property that:

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x
$$

Definition: Vertical Line Test

Make sue you are familiar with functions before trying to learn about inverse functions.

Review: In order to test if a given graph represents a function, we can use the vertical line test on the graph.

Imagine drawing a vertical line through the graph. If this vertical line intersects the graph at two different points, then the graph does not represent a function.

Inverse Functions I

How many of the following are one-to-one functions?

\mathbf{x}	$\mathbf{A}(\mathbf{x})$	\mathbf{x}	$\mathbf{B}(\mathbf{x})$
1	1		1
2	2	3	
3	3		3
4	4	3	3
5	5		4
		3	3
\mathbf{x}	$\mathbf{C}(\mathbf{x})$		\mathbf{x}
3	$\mathbf{1}$	$\mathbf{D}(\mathbf{x})$	
3	2	1	1
3	3	2	1
3	4	3	3
3	5	5	3

Solution

Answer: B

Justification: Function A always maps x to a different value. Since $A(x)$ is unique for all x, the function is one-to-one.

Function B always maps x to the same value, 3 , so it is not one-toone.
"Function C" is not a function because $x=3$ maps to 5 different values. Therefore, it cannot be a one-to-one function.

Function D is not one-to-one because both $x=3$ and $x=4$ map to 3 .

Inverse Functions II

How many of the following are one-to-one functions?
A. 0
B. 1

C. 2
D. 3
E. 4

Solution

Answer: B

Justification: A function is not one-to-one if 2 different values of x map to the same value. This means that if 2 points lie on the same horizontal line, the function is not one-to-one:

Functions B and D fail the horizontal line test. This means that at least two different points lie on the same horizontal line. These functions are not one-to-one

Graph C is not a function since one value of x maps to 2 different values. This graph fails the vertical line test.

Inverse Functions III

Suppose the points $(a, f(a))$ and $(b, f(b))$ belong to a one-to-one function.

If $f(a)=f(b)$, what can be concluded about the relationship between a and b ?
A. $a=b$
B. $a \neq b$
C. $a=b=0$
D. $f(a)=f(b)$ is not possible for one - to- one functions
E. Nothing can be concluded about a and b

Solution

Answer: A

Justification: Recall that for one-to-one functions, no two x in the domain can map to the same value in the range. If $f(a)=f(b)$ this means that both $x=a$ and $x=b$ map to the same value.

In order for this to be possible, we must conclude that $a=b$, otherwise the function f is not one-to-one. The points $(a, f(a))$ and $(b, f(b))$ are the same point.

This fact is used to show that equations are one-to-one. If we assume that $f(a)=f(b)$ for two values a and b in the domain of f and show that $a=b$, then the function is one-to-one.

Extend Your Learning: Examples

Assume that $f(a)=f(b)$ for a and b in the domain of f.

Example 1: $f(x)=2 x+1$

$$
\begin{aligned}
f(a) & =f(b) \\
2 a+1 & =2 b+1 \\
2 a & =2 b \\
a & =b
\end{aligned}
$$

Since it was shown that $a=b$, the function is one-to-one.

Example 2: $f(x)=x^{2}$

$$
\begin{aligned}
f(a) & =f(b) \\
a^{2} & =b^{2} \\
a & = \pm b
\end{aligned}
$$

Since it may not be the case that $a=b$, the function is not one-to-one.

Inverse Functions IV

How many of the following are one-to-one functions?

$$
A(x)=-2 x+1
$$

A. 0

$$
B(x)=3 x^{2}-2 x+1
$$

B. 1
C. 2
D. 3
E. 4
$C(x)=x^{3}-1$
$D(x)=2|x|+1$

Solution

Answer: C

Justification: See the previous examples to show that function A is one-to-one and function B is not one to one.

Determine if function C and D are one-to-one:

$$
\begin{array}{rlrl}
C(x) & =x^{3}-1 & D(x) & =2|x|+1 \\
C(a) & =C(b) & D(a) & =D(b) \\
a^{3}-1 & =b^{3}-1 & 2|a|+1 & =2|b|+1 \\
a^{3} & =b^{3} & |a| & =|b| \\
a & =b & a & = \pm b
\end{array}
$$

Function C is one-to-one
Function D is not one-to-one

Alternative Solution

Answer: C

Justification: Alternatively you can graph each function and use the horizontal line test. This approach is often faster if you know the general shape of each function.
C.

B

D.

Inverse Functions V

Which of the following is the correct inverse function of f ?

Solution

Answer: A

Justification: The inverse function f^{-1} maps values of $f(x)$ back to x.

Rearranging this as a function of x gives:

Inverse Functions VI

If the point $(\mathrm{a}, \mathrm{a}+1)$ lies on the function f, which point lies on f^{-1} ?
A. $(a, a-1)$
B. $(a-1, a)$
C. $(a, a+1)$
D. $(a+1, a)$
E. None of the above

Solution

Answer: D

Justification: If the point $(\mathrm{a}, \mathrm{a}+1)$ lies on function f, this means that $x=a$ was mapped to $f(a)=a+1$.
The inverse function must then map $x=a+1$ to $f^{-1}(a+1)=a$. The point $(a+1, a)$ lies on f^{-1}.

Notice how the x and y coordinates of a function are interchanged in its inverse function.

Inverse Functions VII

The domain of function f is $x>0$ and its range is all real numbers. What is the domain and range of f^{-1} ?

	Domain	Range
A.	$x>0$	All reals
B.	All reals	$y>0$
C.	$x>0$	$y>0$
D.	All reals	All reals
E.	$x<0$	All reals

Press for hint

Consider the functions $f(x)=\ln (x)$ and its inverse $f^{-1}(x)=e^{x}$.

The domain of $f(x)=\ln (x)$ is $x>0$, while its range is all real numbers.

Solution

Answer: B

Justification: Recall the x and y values for each point of a function and its inverse interchange. This means the domain and range of a function and its inverse interchange.

Since the domain of f is $x>0$, the range of f^{-1} is $y>0$. Likewise, the range of f is all real numbers, so the domain of f^{-1} is all real numbers.

Solution cont'd

Consider the graphs of $f(x)=\ln (x)$ and $f^{-1}(x)=e^{x}$. The domain and range of these two functions are the same as those asked in this question.

Domain: $x>0$
Range: All real numbers

Domain: All real numbers
Range: $y>0$

Inverse Functions VIII

Suppose that function f multiplies a number by 2 , then adds one to it. Which of the following correctly describes its inverse?
A. Subtract 1 , then divide by 2
B. Divide by 2 , then subtract 1
C. Add 1, then divide by 2
D. Divide by 2 , then add 1
E. Either A or B

Solution

Answer: A

Justification: The inverse function must undo the effects of the original function. Suppose x is put into function f. The value x will then be mapped to $f(x)=2 x+1$. This function has the property that it will map $f^{-1}(x)$ back to x :

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =x \\
2\left(f^{-1}(x)\right)+1 & =x \quad \text { since } f(x)=2 x+1 \\
f^{-1}(x) & =\frac{1}{2}(x-1) \quad \text { solve for } f^{-1}(x)
\end{aligned}
$$

Following order of operations, we must first subtract one from the input then divide by 2.

Solution Continued

Answer: A

Justification: A quick short cut to finding the inverse of a function is letting $y=f(x)$, interchanging x and y , and then solving for y as a function of x.

$$
\begin{aligned}
f(x) & =2 x+1 \\
y & =2 x+1 \quad \text { let } y=f(x) \\
x & =2 y+1 \quad \text { interchang } x \text { and } y \\
2 y & =x-1 \quad \text { solvefor } y \\
y & =\frac{1}{2}(x-1) \\
f^{-1}(x) & =\frac{1}{2}(x-1)
\end{aligned}
$$

Compare this solution with the previous one to see why we can interchange the x and y.

Inverse Functions IX

What is the inverse of the following function shown below?

A

B.

C.

D.

Solution

Answer: C

Justification: Find points on the original function, then interchange the x and y coordinates.

Solution Cont'd

Answer: C

Justification: The inverse of a function is the reflection across the line $y=x$ because all x and y values interchange.
Answer A reflected the graph in the x-axis, answer B reflected the graph in the y-axis, and answer D reflected the graph in both the x and y axis.

$$
\begin{array}{ll}
- & f(x) \\
- & f^{-1}(x) \\
--- & y=x
\end{array}
$$

Inverse Functions X

What is the inverse of the following function shown below?

A.

B.

C.

D.

Solution

Answer: B

Justification: Reflect the graph across the line $y=x$ to find the inverse.

$$
\begin{aligned}
& -f(x)=3 \log _{2} x \\
& -f^{-1}(x)=2^{\frac{x}{3}}
\end{aligned}
$$

Note: It is not necessary to know the equations of the graphs shown to determine the inverse of a graph.

Inverse Functions XI

What is the inverse of the A. following function shown below?

C.

B.

D.

Solution

Answer: B

Justification: This function is symmetric across the line $y=x$ and so a reflection across the line $y=x$ does not change the function. This function and its inverse are the same.

$$
\begin{aligned}
& -f(x)=\frac{1}{x-1}+1 \\
& -f^{-1}(x)=\frac{1}{x-1}+1
\end{aligned}
$$

Inverse Functions XII

Solution

Answer: D

Justification: Only functions that are one-to-one have an inverse that is also a function.

Not one-to-one

Not a function

Since function D fails the horizontal line test (see question 2), it is not one-to-one and therefore its inverse is not a function.

Solution Continued

The 4 graphs shown are the inverses of those in this question.
The inverse of graph D is the only graph that fails the vertical line test, so it is not a function.

To determine if the inverse of a function is a function. use the horizontal line test on the original function, or the vertical line test on the inverse.
A.

B.

C.

D.

Inverse Functions XIII

Consider $f(x)=\sin (x)$ only A. for $-\pi / 2 \leq x \leq \pi / 2$. What is the inverse of f ?
Note the different axes.

C.
B.

D.

Solution

Answer: B

Justification: Both answers A and B have the correct shape for f^{-1}.

$$
\begin{aligned}
& -f(x)=\sin (x) \\
& -f^{-1}(x)=\sin ^{-1}(x)
\end{aligned}
$$

Answers A and B differ by the labels on the x-axis and y-axis. Since the domain of f is $-\pi / 2 \leq x \leq \pi / 2$ and its range is $-1 \leq y \leq 1$, the domain of f^{-1} must be $-1 \leq x \leq 1$ and the range is $-\pi / 2 \leq y \leq \pi / 2$.

Note: The domain of $f(x)=\sin (x)$ is restricted so that f^{-1} is a function. The sine function is normally not one-to-one.

