

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Geometry: Dimensions

Science and Mathematics Education Research Group

Dimension

Dimensions I

The length of a line segment is x. The line is then doubled in length. What is the length of the new line segment?

Answer: A

Justification: The length of the line is doubled. Therefore, we must double the original length to obtain the

new, expanded length.

$$2 \times x = 2x$$

Dimensions II

The side length of a square is x and therefore has a perimeter of 4x. Each of the side lengths in the square are then doubled. What is the perimeter of the new square?

Answer: D

Justification: Each of the side lengths have been doubled, so each side now has a length of 2x. There are four sides, so the perimeter is going to be $4 \times 2x = 8x$

Alternatively, the original perimeter is 4x. Since each side is doubled, the perimeter is also doubled, giving 8x.

Dimensions III

A square with side length x has area x^2 . Each of the side lengths in the square are then doubled. What is the area of the new square?

Answer: B

Justification: The doubled side length is 2x. The area of the square is side length squared: $(2x)^2 = 2x \times 2x = 4x^2$

Therefore, $4x^2$ is the area of the new square. Notice,

Dimensions IV

The edges of a cube are length x. A cube has 12 edges, so the total edge length is 12x. What is the total edge length, if each edge is doubled?

Answer: C

Justification: Each of the edge lengths doubles, so the total length of all the edges together must also double.

$$2 \times 12x = 24x$$

Alternatively, each side length doubles, and there are 12 sides, so:

$$12 \times (2x) = 24x$$

Dimensions V

The edge length of a cube is x, and each face has an area of x^2 . Each of the edge lengths in the cube are then doubled. What is the total surface area of the new cube?

Answer: D

Justification: A cube has 6 faces, each with a surface area of x^2 . This gives a total surface area of $6x^2$. If each side length is doubled, then the surface area of each face becomes $6(2x)^2 = 6(4x^2) = 24x^2$.

Alternatively, the surface area of each face increases by a factor of 4, $4x^2$, and there are 6 faces. This gives

$$6 \times 4x^2 = 24x^2$$

Dimensions VI

The volume of a cube with side length x is x^3 . Each of the edge lengths in the cube are then doubled. What is the volume of the new cube?

Answer: D

Justification: The volume of a cube is the edge length cubed. This gives: $(2x)^3 = (2x) \times (2x) \times (2x) = 8x^3$

As seen in the diagram below, when the side length doubles, 8 of the original cubes can fit inside the new, larger cube.

Dimensions VII

The edge length of a cube is increased by a factor of F (the new length is Fx), where F is called the scaling factor. By how many times will the surface area increase?

Answer: B

Justification: Think about the previous questions.

The surface area of a cube of length x is $6x^2$. If the side length increases by a factor of F, the side length becomes Fx. The surface area then becomes $6(Fx)^2$, which is F² times larger than the original surface area:

$$A_{original} = 6x^2; A_{new} = 6(Fx)^2 = 6F^2x^2 = F^26x^2 = F^2A_{original}$$

You can check this by thinking about the question in which we doubled the side length. The surface area of the original cube was $6x^2$. When the side lengths were doubled, the surface area became $6(2x)^2 = 24x^2$

Dimensions VIII

The edge length of a cube is increased by a factor of F. By how many times will the volume increase?

Answer: A

Justification: The volume of a cube of length x is x^3 . If the side length increases by a factor of F, the side length becomes Fx. The volume then becomes $(Fx)^3$:

$$V_{original} = x^3; V_{new} = (Fx)^3 = F^3 x^3 = F^3 V_{original}$$

You can check this by thinking about the question in which we doubled the side length. The volume of the original cube was x^3 . When the side lengths were doubled, the surface area became $(2x)^3 = 8x^3$.

Dimensions IX

The edge length of a tesseract (cube of 4 spatial dimensions) is doubled. What is the factor that the 3D volume increases by?

A. 16

B. 8 C. 4

D. 2

E. No idea

Answer: B

Justification: As we have deduced before, the number of dimensions of the object does not affect the scaling of its constituent parts, as in, squares and cubes both scale by a factor of F^2 in terms of their surface area. Both cubes and the 3D volume on the tesseract scale the same (F^3) when we talk about 3D volume, and therefore the answer is $2^3=8$.