Mathematics
 Numbers: Exponents

Science and Mathematics Education Research Group

Properties of Exponents

Review of Exponent Laws

Let a and b be positive real numbers. Let x and y be real numbers.

$$
a^{0}=1
$$

$$
a^{-x}=\frac{1}{a^{x}}
$$

$$
a^{x}=a^{y} \quad \text { if and only if } x=y
$$

$$
\begin{aligned}
a^{x} \cdot a^{y}=a^{x+y} & \frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x} \\
\frac{a^{x}}{a^{y}}=a^{x-y} & \left(\frac{a}{b}\right)^{-x}=\left(\frac{b}{a}\right)^{x}
\end{aligned}
$$

Exponent Laws I

How can the following expression be simplified using exponents?

$$
3 \times 3 \times 3+3 \times 3
$$

A. 3^{5}
B. $3^{3}+3^{2}$
C. $(3+2)^{3}$
D. $3^{3}+2^{3}$

$$
a^{x}+a^{y} \neq a^{x+y}
$$

E. EitherAorB

Solution

Answer: B

Justification: Group the expression into two separate powers of 3:

This gives the final expression $3^{3}+3^{2}$. This cannot be simplified any further unless the powers of three are calculated.

Answer A $\left(3^{5}\right)$ is incorrect since $3^{3}+3^{2} \neq 3^{5}$. Notice that we only add exponents when two powers with the same base are multiplied together, not added:

$$
a^{x} \cdot a^{y}=a^{x+y} \quad a^{x}+a^{y} \neq a^{x+y}
$$

Solution Continued

The values we are comparing in this question are small, so we can calculate the final values of each expression:

$$
3 \times 3 \times 3+3 \times 3=27+9=36
$$

A. $3^{5}=243$
B. $3^{3}+3^{2}=27+9=36$
C. $(3+2)^{3}=5^{3}=125$
D. $3^{3}+2^{3}=27+8=35$

Only answer B matches the value of the expression in the question. The other answers give a different final value, so the expressions are not equivalent.

Exponent Laws II

Simplify the following expression:

$$
\frac{7^{5}+7^{2}}{7^{2}}
$$

A. $7^{3}+1$
B. $7^{5}+1$
C. 7^{5}
D. $7^{3}+7^{2}$

$$
\frac{7^{5}+7^{2}}{7^{2}}=\frac{7^{5}}{7^{2}}+\frac{7^{2}}{7^{2}}
$$

E. Cannotbesimplifie

Solution

Answer: A
Justification: This expression can be simplified in several ways:
Factor out 7^{2} from the numerator:

$$
\begin{aligned}
\frac{7^{5}+7^{2}}{7^{2}} & =\frac{7^{2}\left(7^{3}+7^{0}\right)}{7^{2}} \\
& =7^{3}+7^{0} \\
& =7^{3}+1
\end{aligned}
$$

Split the fraction into the sum of two fractions:

$$
\begin{aligned}
\frac{7^{5}+7^{2}}{7^{2}} & =\frac{7^{5}}{7^{2}}+\frac{7^{2}}{7^{2}} \\
& =7^{5-2}+7^{2-2} \\
& =7^{3}+7^{0} \\
& =7^{3}+1
\end{aligned}
$$

Exponent Laws III

Simplify the following expression:

$$
\frac{12^{10}}{3^{10} 4^{12}}
$$

A. 16
B. 12
C. $\frac{1}{4}$
D. $\frac{1}{12}$
E. $\frac{1}{16}$

$$
(a b)^{x}=a^{x} b^{x}
$$

Press for hint

Solution

Answer: E

Justification: Write 12^{10} as a product of powers with base 3 and 4:

$$
\frac{12^{10}}{3^{10} 4^{12}}=\frac{(3 \cdot 4)^{10}}{3^{10} 4^{12}}=\frac{3^{10} 4^{10}}{3^{10} 4^{12}}=\frac{1}{4^{12-10}}=\frac{1}{16}
$$

Alternatively, you can write the denominator as a power with base $12:$

$$
\frac{12^{10}}{3^{10} 4^{12}}=\frac{12^{10}}{3^{10} 4^{10} 4^{2}}=\frac{12^{10}}{(3 \cdot 4)^{10} 4^{2}}=\frac{18^{10}}{18^{10} 4^{2}}=\frac{1}{4^{2}}=\frac{1}{16}
$$

Exponent Laws IV

Simplify the following expression:

$$
\frac{4^{2}}{2^{8}+2^{9}}
$$

A. $\frac{1}{2^{6}+2^{7}}$
B. $\frac{1}{2^{4}+2^{5}}$
C. $\frac{1}{2^{4}+2^{9}}$
D. $\frac{1}{2^{9}}$
E. Cannotbesimplifie

Solution

Answer: B

Justification: The power of 4 can be rewritten as a power with a base of 2 :

$$
\frac{4^{2}}{2^{8}+2^{9}}=\frac{\left(2^{2}\right)^{2}}{2^{8}+2^{9}}=\frac{2^{2 \cdot 2}}{2^{8}+2^{9}}=\frac{2^{4}}{2^{8}+2^{9}}
$$

Factor out a power of 2 from the denominator to cancel with the numerator:

$$
\frac{2^{4}}{2^{8}+2^{9}}=\frac{2^{4}}{2^{4} \cdot 2^{8-4}+2^{4} \cdot 2^{9-4}}=\frac{2^{4}}{2^{4}\left(2^{4}+2^{5}\right)}=\frac{1}{2^{4}+2^{5}}
$$

Exponent Laws V

Write the following as a single power with base 4: 4^{17}

$$
\overline{4^{0} \cdot 4^{17}+4^{0}}
$$

A. 4^{17}
B. $4^{\frac{1}{2}}$
C. 4^{0}
D. 4^{-1}
E. Cannotbewrittena sasingl甲owerof 4

Solution

Answer: E

Justification: This expression cannot be simplified any further.

$$
\frac{4^{17}}{4^{17}+4^{0}}=\frac{4^{17}}{4^{17}+1}
$$

Common errors include:

1. Incorrectly adding exponents

$$
\frac{4^{17}}{4^{17}+4^{0}} \neq \frac{4^{17}}{4^{17+0}}=4^{0}
$$

2. $4^{0}=1$, not 0

$$
\frac{4^{17}}{4^{17}+4^{0}} \neq \frac{4^{17}}{4^{17}+0}=4^{0}
$$

3. Splitting the denominator

$$
\frac{4^{17}}{4^{17}+4^{0}} \neq \frac{4^{17}}{4^{17}}+\frac{4^{17}}{4^{0}}
$$

Exponent Laws VI

Write the following as a single power of 2 :

$$
\left(\frac{2}{0.5}\right)^{5}(0.5)^{4}(2)^{-5}
$$

A. 2^{2}
B. 2^{1}
C. 2^{0}
D. 2^{-1}
E. Cannotbewrittenasasingl甲owerof2

Solution

Answer: B

Justification: This expression can be simplified in many ways because all the terms can be expressed as a power of 2. Two possible solutions are shown below.

Cancel terms where possible and collect like terms:

$$
\left(\frac{2}{0.5}\right)^{5}(0.5)^{4}(2)^{-5}=\frac{2^{5}}{0.5^{5}} \cdot 0.5^{4} \cdot \frac{1}{2^{5}}=\frac{1}{0.5^{5-4}}=2^{1}
$$

Express all terms as a power of 2 :

$$
\left(\frac{2}{0.5}\right)^{5}(0.5)^{4}(2)^{-5}=(2 \cdot 2)^{5} \cdot\left(\frac{1}{2}\right)^{4} \cdot(2)^{-5}=2^{5} \cdot 2^{5} \cdot 2^{-4} \cdot 2^{-5}=2^{5+5-4-5}=2^{1}
$$

Exponent Laws VII

Which of the following powers is the largest?
2^{5}
3^{4}
4^{3}
5^{2}
6^{-5}
A. 2^{5}
B. 3^{4}
C. 4^{3}
D. 5^{2}
E. 6^{-5}

Solution

Answer: B
Justification: There are generally no rules when comparing powers with different bases.

$$
\begin{array}{lr}
2^{5}=32 & 6^{-5}<5^{2}<2^{5}<4^{3}<3^{4} \\
3^{4}=81 & \\
4^{3}=64 & \\
5^{2}=25 & \begin{array}{l}
\text { Note: Large exponents tend to have } \\
\text { more impact on the size of a number } \\
\text { than large bases. } \\
6^{-5}=\frac{1}{6^{5}}=\frac{1}{7776}
\end{array} \quad 2^{100} \gg 100^{2}
\end{array}
$$

Exponent Laws VIII

How many of the following terms are less than 0 ?
$(-3)^{2}$
3^{-2}
-3^{-2}
-3^{2}
A. 0
B. 1
C. 2
D. 3
E. 4

Solution

Answer: C

Justification: Simplify each term separately.
Be careful when dealing with negatives on exponents. Although every expression has a negative sign, only -3^{2} and -3^{-2} are negative. Think about order of operations: brackets come before exponents, which come before multiplication.

$$
\begin{array}{ll}
(-3)^{2}=9 & -3^{2}<-3^{-2}<0<3^{-2}<(-3)^{2} \\
3^{-2}=\frac{1}{9} & -9<-\frac{1}{9}<0<\frac{1}{9}<9 \\
-3^{-2}=-\frac{1}{9} & \\
-3^{2}=-9 &
\end{array}
$$

Exponent Laws IX

How many of the following are less than 1 ?

$$
(0.5)^{2}, \quad 2^{-2}, \quad(-0.5)^{-2}, \quad(-0.5)^{2}, \quad-(0.5)^{-2}
$$

A. 1
B. 2
C. 3
D. 4
E. 5

Solution

Answer: D

Justification: Simplify each term separately to find the terms less than 1.

$$
\begin{array}{ll}
(0.5)^{2}=\frac{1}{2^{2}}=\frac{1}{4} & \text { Less than } 1 \\
2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} & \text { Less than } 1 \\
(-0.5)^{-2}=(-2)^{2}=4 & \text { Greater than } 1 \\
(-0.5)^{2}=\frac{1}{(-2)^{2}}=-\frac{1}{4} & \text { Less than } 1 \\
-(0.5)^{-2}=-2^{2}=-4 & \text { Less than } 1
\end{array}
$$

Exponent Laws X

Consider adding 3 until you obtain the value 3^{33} as shown below:

$$
\underbrace{3+3+3 \ldots+3}_{n \text { terms }}=3^{33}
$$

How many terms are there in the summation?
A. $n=3^{33}-1$
B. $n=3^{33}-3$
C. $n=3^{32}$
D. $n=3^{11}$
E. $n=33$

Solution

Answer: C

Justification: The summation is equal to $3 n$.

$$
3+3+3 \ldots+3=3^{33}
$$

n terms

$$
3 n=3^{33}
$$

It becomes straightforward to solve for n after this step.

$$
\begin{aligned}
3 n & =3^{33} \\
n & =\frac{3^{33}}{3^{1}} \\
n & =3^{32}
\end{aligned}
$$

Exponent Laws XI

Let p and q be positive integers. If $p>q$, which of the following are always true?
A. $2^{-p}>2^{-q}$
B. $2^{-p} \geq 2^{-q}$
C. $2^{-p}=2^{-q}$
D. $2^{-p}<2^{-q}$
E. $2^{-p} \leq 2^{-q}$

Solution

Answer: D

Justification: Rewrite the two expressions using positive exponents of p and q :

$$
2^{-p}=\frac{1}{2^{p}}, \quad 2^{-q}=\frac{1}{2^{q}}
$$

It is now much easier to compare the two expressions.

$$
\frac{1}{2^{p}}<\frac{1}{2^{q}} \quad \text { since } 2^{p}>2^{q}
$$

Remember that dividing by a larger denominator gives a smaller result.

Exponent Laws XII

Let p and q be positive integers and $p>q$. If $b>0$, find all values of b such that

$$
b^{-p} \geq b^{-q}
$$

is always true.
A. $b=1$
B. $0<b<1$
C. $0<b \leq 1$
D. $b>1$
E. $b \geq 1$

Solution

Answer: C
Justification: Rewrite the inequality using positive exponents of p and q :

$$
\frac{1}{b^{p}} \geq \frac{1}{b^{q}}
$$

The LHS is larger than the RHS only if $b^{p}<b^{q}$, since numbers with smaller denominators are larger. Therefore b must be between 0 and 1 to make $b^{p}<b^{q}($ since $p>q)$. For example, $0.5^{2}<0.5^{3}$.

In order to choose between answers B and C , consider when $b=1$.

$$
\frac{1}{1^{p}}=\frac{1}{1^{q}} \quad \text { since } 1 \text { to any power is still } 1
$$

Since we have to include the equality case, the answer is C :

$$
0<b \leq 1
$$

Exponent Laws XIII

Solve for c.

$$
\left(2^{\left(x^{(2)}\right)}\right)=2^{\left(k^{\left(u^{\prime}\right)}\right.}
$$

A. $c=\frac{1}{2}$
B. $c=2$
C. $c=4$
D. $c=8$
E. $c=2^{x}$

Solution

Answer: B

Justification:

$$
\begin{aligned}
&\left(2^{\left(2^{x}\right)}\right)^{c}=2^{\left(2^{x+1}\right)} \\
& 2^{c\left(2^{x}\right)}=2^{\left(2^{x+1}\right)} \text { since }\left(a^{x}\right)^{y}=a^{x y} \\
& c\left(2^{x}\right)=2^{x+1} \quad \text { since } a^{x}=a^{y} \text { if and only if } x=y \\
& c=2^{x+1-x} \\
& \text { divide both sides by } 2^{x} \text { (then subtract } \\
& \text { exponents) }
\end{aligned}
$$

Exponent Laws XIV

Simplify the following: $100^{2}-99^{2}$
$(100+99)^{2}$
A. 199^{2}
B. 199
C. 1
D. 199^{-1}
E. 199^{-2}

Difference of squares:

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Solution

Answer: D

Justification: The numerator is a difference of squares:

$$
\begin{aligned}
& a^{2}-b^{2}=(a+b)(a-b) \\
& \frac{(100+99)(100-99)}{(100+99)^{2}}=\frac{(100-99)}{(100+99)^{2-1}}=\frac{1}{199}=199^{-1}
\end{aligned}
$$

OR

$$
\frac{(102+99)(100-99)}{(100+99)(100+99)}=\frac{(100-99)}{(100+99)}=\frac{1}{199}=199^{-1}
$$

