a place of mind

Mathematics Parabolas

Science and Mathematics Education Research Group

Parabolas

Parabolas I

The graph of $y=x^{2}$ is shown in red. The graph is then shifted 2 units right and 3 units down.
Which one of the following equations represents the translated green graph?

$$
\begin{array}{ll}
\text { A. } & y=(x+2)^{2}+3 \\
\text { B. } & y=(x+2)^{2}-3 \\
\text { C. } & y=(x-2)^{2}+3 \\
\text { D. } & y=(x-2)^{2}-3 \\
\text { E. } & y=x^{2}-1
\end{array}
$$

Solution

Answer: D

Justification: The graph of $y=x^{2}$ is shifted to the right 2 units by replacing x with $(x-2)$. It is shifted down 3 units by replacing y with $(y+3) \cdot y=x^{2}$

$$
\begin{aligned}
y+3 & =(x-2)^{2} \text { shifts graph } 2 \longrightarrow, 3 \downarrow \\
y & =(x-2)^{2}-3
\end{aligned}
$$

The vertex of $y=a x^{2}$ is $(0,0)$. After shifting the graph, the vertex becomes (2, 3). In general, the vertex of the equation

$$
y=a(x-p)^{2}+q \quad \text { is }(p, q)
$$

Parabolas II

What is the vertex of the graph of

$$
y=-2\left(x+\frac{8}{3}\right)^{2}+\frac{15}{2} ?
$$

Is the vertex a maximum or minimum point?
A. $\left(\frac{8}{3}, \frac{15}{2}\right)$, maximum
B. $\left(\frac{8}{3}, \frac{15}{2}\right)$, minimum
C. $\left(-\frac{8}{3}, \frac{15}{2}\right)$, maximum
D. $\left(-\frac{8}{3}, \frac{15}{2}\right)$, minimum
E. $\left(-\frac{16}{3},-15\right)$, maximum

Solution

Answer: C
Justification: Recall that the vertex of $y=a(x-p)^{2}+q$ is (p, q). Therefore:

$$
\text { Vertex }=\left(-\frac{8}{3}, \frac{15}{2}\right)
$$

The vertex is a maximum because $a=-2<0$ in

$$
y=a(x-p)^{2}+q
$$

Since $a(x-p)^{2}$ is always negative in this case, the graph will open downwards.

Parabolas III

The red line shows the graph of $y=x^{2}$. All the other lines are in the form:

$$
y=a x^{2}
$$

In which one of the graphs is $0<a<1$?
A. Green graph
B. Blue graph
C. Cyan graph \square
D. Purple graph \square

Solution

Answer: B

Justification: When $0<a<1$, the graph of $y=a x^{2}$ is always positive so it must lie above (or on) the xaxis. Therefore graph C and D are incorrect.

Since $a<1$, the graph we are looking for must lie below the red graph because its y-values are less -4 than $y=x^{2}$.

The correct answer is graph B:

$$
y=\frac{1}{3} x^{2}
$$

Parabolas IV

Which one of the following is true about a and q if the equation of the given parabola is written in the form
$y=a(x-p)^{2}+q$?
A. $a>0, \quad q>0$
B. $a<0, q>0$
C. $a>0, \quad q<0$
D. $a<0, q<0$
E. $a<0, q=0$

Solution

Answer: D

Justification: The vertex of the graph is at ($6,-4$). This shows that

$$
\begin{aligned}
& q=-4<0 \\
& p=6
\end{aligned}
$$

This point is a maximum point because the parabolas grows to negative infinity (it opens downwards). Therefore

$$
a<0
$$

Parabolas V

How many solutions are there to the equation

$$
0=-\frac{3}{2}(x-6)^{2}-4 ?
$$

A. No solutions
B. 1 solution
C. 2 solutions
D. Infinite solutions
E. Cannot be determined

Solution

Answer: A

Justification: The parabola never crosses the x-axis, which means it has no zeroes.

Therefore

$$
0=-\frac{3}{2}(x-6)^{2}-4
$$

has no solutions.

Parabolas VI

Which one of the graphs shown has 1 unique zero?
A. Red graph \square
B. Green graph \square
C. Blue graph \square
D. Purple graph \square
E. Cyan graph \square

Solution

Answer: B (Green)

Justification: The vertex of the green graph is located at the point $(-5,0)$. Only when $x=-5$ does $y=0$, so it has 1 zero.

Quadratics in the form

$$
y=a(x-p)^{2}
$$

have 1 zero. The vertices of these quadratics lie on the x axis at $(p, 0)$.

Parabolas VII

Consider a parabola with a vertex at $(2,5)$ and one x-intercept at $\left(-\frac{2}{7}, 0\right)$.
A. $\left(\frac{2}{7}, 0\right)$
B. $\left(\frac{16}{7}, 0\right)$
C. $(4,0)$

What are the coordinates of the other x-intercept?
D. $\left(\frac{30}{7}, 0\right)$
E. $\left(\frac{32}{7}, 0\right)$

Solution

Answer: D

Justification: The parabola is symmetric around the line $x=2$.

The two x-intercepts should therefore be the same distance from the line $x=2$.

Distance from $\mathrm{x}=2$:

$$
2-\left(-\frac{2}{7}\right)=\frac{16}{7}
$$

Other x-intercept:

$$
2+\frac{16}{7}=\frac{30}{7}
$$

Parabolas VIII

Consider a parabola with x-intercepts at $(0,0)$ and ($-6,0$). What are the coordinates of its vertex?
A. $(-3,3)$
B. $(-3,-3)$
C. $(6,0)$
D. $(3,0)$
E. Cannotbe determined

Solution

Answer: E

Justification: It is not possible to determine the y-coordinate of the vertex only knowing two x-intercepts. The answer was therefore "Cannot be determined."

It is possible to determine the x-value, however. The vertex must located at the midpoint between ($-6,0$) and (0,0), so its x-coordinate is -3 . Both A and B were possible vertices.

Parabolas IX

Consider a parabola with its vertex at $(-3,-3)$ and one of its x intercepts at $(0,0)$.
Which one of the following equations represents this parabola?
A. $y=(x+3)^{2}-3$
B. $y=3(x+3)^{2}-3$
C. $y=\frac{1}{3}(x+3)^{2}-3$
D. $y=\frac{1}{9}(x+3)^{2}-3$
E. The parabolais not unique

Solution

Answer: C

Justification: The vertex is given so the equation is in the form:

$$
y=a(x+3)^{2}-3
$$

Plugging in the point $(0,0)$ will then find the value for a.

$$
\begin{aligned}
& 0=a(0+3)^{2}-3 \\
& a=\frac{1}{3}
\end{aligned}
$$

Note: When 2 points are given and 1 is the vertex, an unique parabola can be found.

Parabolas X

Consider the graph of the quadratic function:

$$
y=(-4-x)^{2}+3
$$

What is the vertex of the parabola?

E. None of the above

Solution

Answer: B

Justification: Factor out (-1) from (-4-x):

$$
\begin{aligned}
& y=(-4-x)^{2}+3 \\
& y=(-(4+x))^{2}+3
\end{aligned}
$$

This function is the same as

$$
y=(4+x)^{2}+3,
$$

which has a vertex at $(-4,3)$. The extra negative does not affect the graph due to the square. (Try expanding the function and completing the square again)

