

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Arithmetic Sequences

Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2013

Arithmetic Sequences

Arithmetic Sequences I

Consider the following sequence of numbers:

2, 4, 6, 8, 10,

The first 5 terms are shown. What is the 8th term in the arithmetic sequence?

- A. 14
- B. 16
- C. 18
- D. 20
- E. 22

Answer: B

Justification: The sequence is called an arithmetic sequence because the difference between any two consecutive terms is 2 (for example 6 - 4 = 2). This is known as the *common difference*. The next term in the sequence can be found by adding the common difference to the last term:

Arithmetic Sequences II

Consider the following sequence of numbers:

 $a_1, a_2, a_3, a_4, a_5, \dots$

where a_n is the nth term of the sequence. The common difference between two consecutive terms is *d*. What is a_8 , in terms of a_5 and d?

- A. $a_8 = a_5 + 3d$ B. $a_8 = a_5 + 3a_1$ C. $a_8 = a_5 + 8d$ D. $a_8 = a_5 + 8a_1$
- E. Cannot be determined

Answer: A

Justification: The next term in the sequence can be found by adding the common difference to the last term:

$$a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8$$

Only 3 times the common difference has to be added to the 5th term to reach the 8th term.

$$a_8 = a_5 + d + d + d = a_5 + 3d$$

Notice that the first term does not need to be known. As we will see in later questions, it will be helpful to be able to express terms of a sequence with respect to the first term.

Arithmetic Sequences III

Consider the following sequence of numbers:

 $a_1, a_2, a_3, a_4, a_5, \dots$

where a_n is the nth term of the sequence. The common difference between two consecutive terms is *d*. What is a_8 , in terms of a_1 and d?

- A. $a_8 = 8a_1$ B. $a_8 = a_1 + 6d$ C. $a_8 = a_1 + 7d$ D. $a_8 = a_1 + 8d$
- E. Cannot be determined

Answer: C

Justification: The next term in the sequence can be found by adding the common difference to the previous term. Starting at the first term, the common difference must be added 7 times to reach the 8th term:

$$a_1^{+d}a_2^{+d}a_3^{+d}a_4^{+d}a_5^{+d}a_6^{+d}a_7^{+d}a_8$$

$$a_8 = a_1 + 7d$$

Note how we do not add 8 times the common difference to reach the 8th term if we are starting at the first term.

Arithmetic Sequences IV

Consider the following sequence of numbers:

 $a_1, a_2, a_3, a_4, a_5, \dots$

where a_n is the nth term of the sequence. The common difference between two consecutive terms is *d*. What is a_n in terms of a_1 and n?

- A. $a_n = a_1 + (n)a_1$
- B. $a_n = a_1 + (n-1)a_1$
- C. $a_n = a_1 + (n)d$
- D. $a_n = a_1 + (n-1)d$
- E. Cannot be determined

Answer: D

Justification: Consider the value of the first few terms:

```
a_1 = a_1 + 0d

a_2 = a_1 + 1d

a_3 = a_1 + 2d

a_4 = a_1 + 3d

:

a_n = a_1 + (n-1)d
```

Notice that the common difference is added to a_1 (n-1) times, not n times. This is because the common difference is not added to a_1 to get the first term. Also note that the first term remains fixed and we do not add multiples of it to find later terms.

Arithmetic Sequences V

Consider the following arithmetic sequence:

What is the 21st term in the sequence?

A. $a_{21} = 6 + 20(5)$ B. $a_{21} = 21 + 20(5)$ C. $a_{21} = 21 + 21(5)$ D. $a_{21} = 21 - 20(5)$ E. $a_{21} = 21 - 21(5)$

Hint: Find the value of the common difference and the first term.

$$a_n = a_1 + (n-1)d$$

Press for hint

Answer: D

Justification: The common difference is

 $d = a_5 - a_4 = 1 - 6 = -5.$

Subtracting the common difference from a_n gives a_{n-1} . This gives $a_1 = 21$. Using the formula, $a_n = a_1 + (n-1)d$, we find that:

$$a_{21} = 21 + (21-1)(-5) = 21 - 20(5) = -79$$

Arithmetic Sequences VI

How many numbers are there between 23 and 1023 inclusive (including the numbers 23 and 1023)?

E. 1002

A. 998 B. 999	Hint: Consider an arithmetic sequence with $a_1 = 23$, $a_n = 1023$, and $d = 1$
C. 1000	a _n = a ₁ + (n-1)d
D. 1001	

Answer: D

Justification: The answer is not just 1023 - 23 = 1000. Imagine if we wanted to find the number of terms between 1 and 10. The formula above will give 10 - 1 = 9, which is incorrect.

Consider an arithmetic sequence with $a_1 = 23$, and $a_n = 1023$. The common difference (d) for consecutive numbers is 1. Solving for n, we can find the term number of 1023:

$$a_n = a_1 + (n-1)d$$

 $1023 = 23 + (n-1)1$
 $n-1 = 1023 - 23$
 $n = 1001$

Since 1023 is the 1001th term in the sequence starting at 23, there are 1001 numbers between 23 and 1023.

Arithmetic Sequences VII

In a particular arithmetic sequence:

$$a_{19} = 50, \qquad a_{30} = 80$$

What is the common difference of this sequence?

A.
$$d = \frac{30}{9}$$

B. $d = \frac{30}{10}$
C. $d = \frac{30}{11}$
D. $d = \frac{30}{12}$
E. None of the above

Answer: D

Justification:

(Method 1):

To get to a_{30} from a_{19} , 11 times the common difference must be added to a_{19} :

$$a_{30} = a_{19} + 11d$$

 $a_{30} - a_{19} = 11d$
 $30 = 11d$
 $d = \frac{30}{11}$

(Method 2): Using the formulas, a_{19} and a_{30} in terms of a_1 is given by: $a_{19} = a_1 + 18d$ $a_{30} = a_1 + 29d$ Subtracting a_{30} from a_{19} gives: $a_{30} - a_{19} = 11d$ 30 = 11d $d = \frac{30}{2}$

Arithmetic Sequences VIII

The statements A through E shown below each describe an arithmetic sequence. In which of the arithmetic sequences is the value of a_{10} the largest?

- A. $a_1 = 10; d = 2$
- B. a₁ = 15; d = -3
- C. $a_{11} = 30; a_{12} = 20$
- D. $a_{20} = 40; d = 2$
- E. $a_{20} = 40; d = -3$

Answer: E

Justification: It is easy to calculate a_{10} in sequence A since a_1 and d are given: $a_{10} = 10 + 9(2) = 28$.

Sequence B begins at 15, but the common difference is negative, so all terms in statement B are less than 15.

In sequence C, we can see that the common difference is 10 and $a_{10} = 40$ by inspection.

In sequence D, in order to get to a_{10} from a_{20} , we must count down by 2 starting at 40. a_{10} is clearly smaller than 40.

In order to get to a_{10} in sequence E, we must count up by 3 starting at 40 since the common difference is negative. a_{10} in sequence E the largest.