

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Arithmetic Series

Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2013

Arithmetic Series

Arithmetic Series I

Suppose we want to determine the sum of the terms of the following sequence:

S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

Which if of the following correctly expresses this sum?

A.
$$S = 5(5) = 25$$
 Press for hint **?**

- B. S = 5(10) = 50 Consider grouping the terms as shown:
- C. S = 5(11) = 55 S = (1+10) + (2+9) + (3+8) + (4+7) + (5+6)
- D. S = 10(10) = 100

E. S = 10(11) = 110

Answer: C

Justification: By grouping the numbers as shown below, the sum is always 11.

$$S = (1+10) + (2+9) + (3+8) + (4+7) + (5+6)$$

S = 11 + 11 + 11 + 11 + 11 = 5(11) = 55

Note: The sum of the terms of an arithmetic sequence is known as an arithmetic series.

Arithmetic Series II

Consider the sequences from 1 to 10 and 10 to 1. The terms of these two opposite sequences are added together:

First Term

Last Term

What is the sum of the numbers from 1 to 10?

A.
$$S = 5(5)$$

B. $S = 5(10)$
C. $S = 5(11)$
D. $S = 10(10)$
E. $S = 10(11)$

Answer: C

Justification: Let the sum between 1 to 10 (or 10 to 1) be S.

S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

S = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1

The table showed that if we add these together, we will get:

$$2S = 11(10)$$

 $S = 11(5)$

Notice that since we add the numbers from 1 to 10 to 10 to 1, we have twice the sum of the numbers from 1 to 10. Dividing the result by two gives that the sum of the numbers from 1 to 10 is 55.

This method will be used to derive a general formula for finding the sum of terms in an arithmetic sequence.

Arithmetic Series III

Consider the following two arithmetic sequences with n terms:

First TermSequence 1: a_1 a_1+d ... $a_1+(n-2)d$ $a_1+(n-1)d$ Sequence 2: $a_1+(n-1)d$ $a_1+(n-2)d$... a_1+d a_1

If the nth term of sequence 1 is added to the nth term of sequence 2, is the sum the same for all n? If so, what do the pairs add up to?

- A. The terms cannot be paired to give the same sum
- B. 2a₁ + (n-1)d
- C. 2a₁ + 2(n-1)d
- D. 2a₁ + (n)d
- E. $2a_1 + 2(n)d$

Answer: B

Justification:First TermSequence 1: a_1 a_1 a_1+d ... $a_1+(n-2)d$ $a_1+(n-1)d$ Sequence 2: $a_1+(n-1)d$ $a_1+(n-1)d$ $a_1+(n-2)d$ $2a_1+(n-1)d$ $2a_1+(n-1)d$ $2a_1+(n-1)d$ $2a_1+(n-1)d$

When the first terms are added together, we have $a_1+a_1+(n-1)d = 2a_1+(n-1)d.$

The next term in sequence 1 is the previous term plus d.

The next term in sequence 2 is the previous term minus d.

Therefore, the sum of the second terms will also be $2a_1+(n-1)d$. Every pair of terms will have the same sum, $2a_1+(n-1)d$.

Arithmetic Series IV

Let the sum of the terms in sequence 1 (or sequence 2) be S. Which of the following correctly expresses S in terms of the number of terms n, the first term a_1 , and the common difference d?

A.
$$S = \frac{(n-1)}{2} (2a_1 + (n-1)d)$$

B.
$$S = \frac{n}{2}(2a_1 + (n-1)d)$$

C. $S = \frac{(n+1)}{2}(2a_1 + (n-1)d)$
D. $S = n \cdot (2a_1 + (n-1)d)$
E. $S = 2n \cdot (2a_1 + (n-1)d)$

Answer: B

Justification: From the last question, we learned that every pair of terms have the same sum:

S =	a ₁	+	a ₁ +d	+	Ŧ	a ₁ +(n-2)d	+	a ₁ +(n-1)d	
S =	a ₁ +(n-1)d	+	a ₁ +(n-2)d	+	÷	a ₁ +d	+	a ₁	
2S =	2a ₁ +(n-1)d	+	2a ₁ +(n-1)d	+	+	2a ₁ +(n-1)d	+	2a ₁ +(n-1)d	

Since each sequence has n terms, $2a_1+(n-1)d$ occurs n times. We can therefore express the sum S as:

$$2S = n(2a_1 + (n-1)d)$$

$$S = \frac{n}{2}(2a + (n-1)d)$$

Arithmetic Series V

What is the sum of the following arithmetic series?

1 + 2 + 3 + ... + 98 + 99 + 100

- A. 49(101)
- B. 50(100)
- C. 50(101)
- D. 100(100)
- E. 100(101)

Answer: C

Justification: Since we know both the first term and the last term in the formula, we can conclude that:

 $2a_1$ +(n-1)d = (first term) + (last term) = 101

There are 100 terms from 1 to 100, so applying the formula with n = 100 gives: n = n = n

$$S = \frac{n}{2}(2a + (n-1)d)$$
$$S = \frac{100}{2}(101)$$
$$S = 50(101)$$
$$S = 5050$$

Arithmetic Series VI

The statements A through E shown below each describe an arithmetic sequence.

If the first 20 terms of each sequence are added together, which sequence will give the largest sum?

Hint: Find rough estimates for each sum and compare

B.
$$a_1 = 100; a_{21} = 200$$

C.
$$a_1 = 100; a_{101} = 200$$

D.
$$a_1 = 200; a_{11} = 100$$

E.
$$a_1 = 200; a_{21} = 100$$

Answer: A

Justification: The largest sum will be the sequence with the largest $a_1 + a_{20}$ since each series has the same number of terms.

Sequence A, B and C all have the same first term but a different a_{20} . They all also contain the number 200, but this occurs the earliest in A. Therefore, A must have the largest common difference and the largest a_{20} (\approx 300).

Sequence D and E both have a larger first term than A, but they are both decreasing sequences. The 20th term in sequence D is much smaller than 100, so sum of the first 20 terms of D will be smaller than A.

The 20th term in D will be slightly larger than 100. Compared with A which has $a_1 = 100$ and $a_{20} \approx 300$, we can conclude that the sum of the first 20 terms of A will be the largest.

Arithmetic Series VII

Suppose we know that the sum of the first 100 terms in a sequence is 27300. The sum of the first 101 terms in the same sequence is 27876. Which of the following is true about the arithmetic sequence?

- A. $a_{100} = 576$
- B. $a_{100} = -576$
- C. $a_{101} = 576$
- D. $a_{101} = -576$
- E. We cannot learn anything about the sequence

Answer: C

Justification:

The sum of the first 100 terms in a sequence is:

$$S_{100} = a_1 + a_2 + a_3 + a_4 + \dots + a_{99} + a_{100} = 27300$$

The sum of the first 101 terms in a sequence is:

$$S_{101} = a_1 + a_2 + a_3 + a_4 + ... + a_{99} + a_{100} + a_{101} = 27876$$

If we subtract S_{100} from S_{101} , nearly all the terms cancel except for a_{101} . Therefore:

$$S_{101} - S_{100} = a_{101} = 27876 - 27300 = 576$$

In general, $S_n - S_{n-1} = a_n$

Arithmetic Series VIII

Compute the following:

 $\log_{10}(1.10.100 \cdot ... \cdot 10^{99} \cdot 10^{100})$

A. 100

Hint:

- B. 5000 $\log_{10}(ab) = \log_{10}(a) + \log_{10}(b)$
- C. 5050
- D. 10¹⁰⁰

E. 10⁵⁰⁵⁰

Answer: C

Justification:

The logarithm can be expanded to:

$$\log 1 + \log 10 + \log 100 + ... + \log 10^{99} + \log 10^{100}$$

 $= \log 1 + \log 10 + 2\log 10 + ... + 99\log 10 + 100\log 10$

This is the same as the series:

$$0 + 1 + 2 + 3 + \dots + 99 + 100$$
$$S_{101} = \frac{101}{2}(0 + 100)$$
$$S_{101} = 5050$$

Reminder: Log Rules $\log_{10}(ab) = \log_{10}(a) + \log_{10}(b)$ $\log_{10}(a^{b}) = b \cdot \log_{10}(a)$ $\log_{10}(1) = 0, \quad \log_{10}(10) = 1$

Arithmetic Series IX

Tom must deliver pizza to every floor in a 20 floor building. There is 1 flight of stairs between each floor, starting between the first and the second floor. Once Tom delivers pizza to a floor, he must walk all the way back down to his truck to get more pizza. For example, to deliver pizza to the 5th floor, he goes up 4 flights and down 4 flights of stairs. How many flights of stairs does he have to go up and down to deliver pizza to every floor in the building?

- A. 190 flights
- B. 200 flights
- C. 380 flights
- D. 400 flights
- E. 0 since Tom takes the elevator

Answer: C **Justification**:

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

The number of stairs to go up and down to each floor is:

Floor 1: 0 stairs Floor 2: 2 stairs Floor 3: 4 stairs Floor 4: 6 stairs

To deliver each every floor, we must compute the sum of the first 20 terms of the sequence with $a_1 = 0$, d = 2:

0, 2, 4, 6
$$S_{20} = \frac{20}{2} (2(0) + (20 - 1)2)$$
$$S_{20} = 10(38) = 380$$