a place of mind

Mathematics
 Geometric Sequences

Science and Mathematics Education Research Group

Geometric Sequences

Geometric Sequences I

Consider the following sequence of numbers: $1,2,4,8,16 \ldots$.
The first 5 terms are shown. What is the $8^{\text {th }}$ term in the arithmetic sequence?
A. 24
B. 32
C. 64
D. 128
E. 256

Solution

Answer: D

Justification: The sequence is called a geometric sequence because every two consecutive terms follow the same ratio. In this case, the next number is always twice the previous number. Therefore, the $8^{\text {th }}$ term can be found by multiplying the $5^{\text {th }}$ term by 2 three times.

$$
\begin{aligned}
& 1, \quad 2,4, \quad 8,16,32,64,128 \\
& 5^{\text {th }} \text { term } \\
& 8^{\text {th }} \uparrow{ }^{\uparrow} \text { term }
\end{aligned}
$$

Geometric Sequences II

Consider the following sequence of numbers:

$$
a_{1}, \quad a_{2}, \quad a_{3}, \quad a_{4}, \quad a_{5}, \ldots a_{n}
$$

where a_{n} is the $n^{\text {th }}$ term of the sequence. The next term is 3 times larger than the previous term (the common ratio is 3). Which of the following is a correct value for a_{7} ?
A. $a_{7}=3 a_{5}$
B. $a_{7}=6 a_{5}$
C. $a_{7}=9 a_{4}$
D. $a_{7}=27 a_{4}$
E. $a_{7}=3 a_{5}+3 a_{6}$

Solution

Answer: D

Justification: The next term is always 3 times larger than the previous term. Therefore,

$$
a_{7}=3\left(a_{6}\right)
$$

Although this is a correct value for a_{7}, none of the provided answers are in terms of a_{6}. Breaking down a_{6} in terms of a_{5} gives another expression for a_{7} :

$$
a_{7}=3\left(a_{6}\right)=3\left(3 a_{5}\right)=9 a_{5} \quad a_{6}=3\left(a_{5}\right)
$$

This answer also does not match any of the given solutions. The value of a_{7} can also be written in terms of a_{4} :

$$
a_{5}=3\left(a_{4}\right) \quad a_{7}=9 a_{5}=9\left(3 a_{4}\right)=27 a_{4}
$$

Geometric Sequences III

In a geometric sequence, the first term is a_{1} and each term is r times the previous (the common ratio is r). What is the $\mathrm{n}^{\text {th }}$ term in the sequence?

$$
\begin{aligned}
& \qquad \begin{array}{ccccl}
\mathrm{a}_{1}, & \mathrm{a}_{1}(\mathrm{r}), & \mathrm{a}_{1}(\mathrm{r})(\mathrm{r}), & \mathrm{a}_{1}(\mathrm{r})(\mathrm{r})(\mathrm{r}), & \ldots \\
\text { Term: } 1 & 2 & 3 & 4 & \text { A. } a_{n}=a_{1}(n)(r) \\
& & & \text { B. } a_{n}=a_{1}\left(r^{n}\right) \\
& & \text { C. } a_{n}=a_{1}\left(r^{n-1}\right) \\
& & \text { D. } a_{n}=a_{1}\left(r^{n+1}\right) \\
\text { Press for hint } & & \text { E. } a_{n}=a_{1}\left(n^{r}\right)
\end{array}
\end{aligned}
$$

Solution

Answer: C

Justification: The second term is the first term multiplied by r . The third term is the first term multiplied by r twice. Continuing this pattern to the $\mathrm{n}^{\text {th }}$ term:

Term: 1 2 3 $\begin{array}{lllll}n\end{array}$

$$
\left.\begin{array}{llll}
a_{1}, & a_{1}(r), & a_{1}(r)(r), & a_{1}(r)(r)(r),
\end{array}\right] .
$$

Notice that to find the nth term, we multiply the first term by the common ratio $\mathrm{n}-1$ times, not n times.

$$
a_{n}=a_{1} r^{n-1}
$$

Geometric Sequences IV

Consider a geometric sequence with first term a_{1}, common ratio r , and $\mathrm{a}_{4}=24$.
The first term of this sequence is multiplied by 2 , while the common ratio is kept the same. What is a_{4} in this new sequence?
A. $a_{4}=24$

$$
a_{n}=a_{1} r^{n-1}
$$

B. $\mathrm{a}_{4}=24(2)=48$
C. $a_{4}=24(4)=96$
D. $a_{4}=24(8)=192$
E. The answer depends on the value of the first term.

Solution

Answer: B

Justification: The fourth term of any sequence expressed in terms of the first term a_{1} and common ratio r is:

$$
a_{4}=a_{1}\left(r^{4-1}\right)=a_{1}\left(r^{3}\right)
$$

If a_{1} is doubled, then a_{4} is also multiplied by 2 :

$$
\left(2 a_{1}\right)\left(r^{3}\right)=2 a_{4}=2(24)=48
$$

Geometric Sequences V

Consider a geometric sequence with first term a_{1}, common ratio 2 , and $\mathrm{a}_{4}=24$.
The common ratio of this sequence is now increased from 2 to 3 , while the first term is kept the same. What is a_{4} in this new sequence?
A. $24(3)=72$
B. $24(4)=96$
C. $24(8)=192$
D. $24(27)=648$
E. None of the above

Solution

Answer: E

Justification: The fourth term of any sequence expressed in terms of the first term a_{1} and common ratio r is:

$$
a_{4}=a_{1}\left(r^{4-1}\right)=a_{1}\left(r^{3}\right)
$$

The sequences will look like:
When $r=2$,

$$
a_{4}=a_{1}\left(2^{3}\right)=8 a_{1}
$$

$$
\begin{aligned}
& r=2: 3,6,12,24, \ldots \\
& r=3: \\
& r
\end{aligned}, 9,27,81, \ldots .
$$

When $r=3$, the new $4^{\text {th }}$ term is:

$$
a_{4}=a_{1}\left(3^{3}\right)=27 a_{1}
$$

The new value for a_{4} is therefore $\frac{27}{8}$ times larger, giving $\frac{27}{8}(24)=81 \quad$ The answer is therefore "None of the above."

Geometric Sequences VI

The first term of a sequence is 40 and the common difference is
$-\frac{1}{2}$. Which of the following correctly displays this sequence?
A. $40,80,160,320, \ldots$
B. $40,-80,160,-320, \ldots$
C. $40,20,10,5, \ldots$
D. $-40,-20,-10,-5, \ldots$
E. $40,-20,10,-5, \ldots$

Solution

Answer: E

Justification: The common ratio is a fraction less than 1. Instead of terms getting larger than the previous, each term is smaller than the previous. In this case, since the common ratio is a half, each term is half as large as the previous.

The common ratio is also negative. Repeatedly multiplying by a negative number results in a number alternating from positive to negative. The expected geometric sequence is therefore:

$$
40,-20,10,-5,2.5,-1.25,0.75, \ldots
$$

Geometric Sequences VII

In a geometric sequence, $a_{41}=29$ and $a_{43}=32$. What is the common ratio of this sequence?

$$
\begin{aligned}
& \text { A. } r= \pm 3 \\
& \text { B. } r= \pm \frac{32}{29} \\
& \text { C. } r= \pm \frac{29}{32} \\
& \text { D. } r= \pm \sqrt{\frac{32}{29}} \\
& \text { E. } r= \pm \sqrt{\frac{29}{32}}
\end{aligned}
$$

Solution

Answer: D

Justification: An equation must be found that states a_{43} in terms of a_{41}. Multiplying a_{41} by r gives a_{42}, and multiplying a_{41} by r twice gives a_{43} :

$$
\begin{aligned}
& a_{41} r=a_{42} \\
& a_{41} r^{2}=a_{43}
\end{aligned}
$$

Since both a_{41} and a_{43} are known, the equation can be solved for r :

$$
\begin{aligned}
& 29 r^{2}=32 \\
& r= \pm \sqrt{\frac{32}{29}}
\end{aligned}
$$

Note that if the common difference is negative, the $41^{\text {st }}$ and $43^{r d}$ term will be positive and the $42^{\text {nd }}$ term will be negative.

Geometric Sequences VIII

How would the 999th term of a geometric sequence be expressed in terms of the 99th term?
(Express $a_{9 g 9}$ in terms of a_{99} and r)
A. $a_{999}=r^{99} a_{99}$
B. $a_{999}=r^{100} a_{99}$
C. $a_{999}=r^{900} a_{99}$
D. $a_{999}=r^{999} a_{99}$
E. $a_{999}=r^{\frac{999}{99}} a_{99}$

Solution

Answer: C

Justification: Write both a_{999} and a_{99} in terms of a_{1} :

$$
\begin{aligned}
a_{999} & =r^{998} a_{1} \\
a_{99} & =r^{98} a_{1}
\end{aligned}
$$

Dividing these equations cancel a_{1}, leaving:

$$
\begin{aligned}
\frac{a_{999}}{a_{99}} & =\frac{r^{998} a_{1}}{r^{98} a_{1}} \\
a_{999} & =r^{998-98} a_{99} \\
a_{999} & =r^{900} a_{99}
\end{aligned}
$$

In general, the $n^{\text {th }}$ term in a sequence written in terms of the $b^{\text {th }}$ term (where $n>b$) is:

$$
a_{n}=r^{n-b} a_{b}
$$

Geometric Sequences IX

Consider the four geometric sequences shown below:

1. $a_{1}=10, r=2$
2. $a_{1}=-10, r=2$
3. $a_{1}=10, r=-2$
4. $a_{1}=-10, r=-2$

In how many of the sequences is the $100^{\text {th }}$ term positive?
A. The $100^{\text {th }}$ term is positive in all of the sequences
B. The $100^{\text {th }}$ term is positive in 3 of the sequences
C. The $100^{\text {th }}$ term is positive in 2 of the sequences
D. The $100^{\text {th }}$ term is positive in 1 of the sequences
E. The $100^{\text {th }}$ term is positive in none of the sequences

Solution

Answer: C

Justification:

Sequence 1: $a_{1}>0, r>0$
Every term in this sequence is positive because positive numbers are multiplied by positive numbers.
Sequence 2: $a_{1}<0, r>0$
Every term in this sequence is negative. From the formula $a_{n}=$ $a_{1} r^{n-1}, a_{1}$ is negative but r^{n-1} is always positive.
Sequence 3: $a_{1}>0, r<0$
Every odd term in this sequence is positive. Since $a_{100}=a_{1}\left(r^{99}\right)$, a_{100} is negative because r^{99} is negative and a_{1} is positive.
Sequence 4: $a_{1}<0, r<0$
Every even term in this sequence is positive. Since $a_{100}=a_{1}\left(r^{99}\right)$, a_{100} is positive because r^{99} is negative and a_{1} is negative.

