

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Trigonometry: Special Triangles (45-45-90)

Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2013

Special Triangles 45-45-90

The 45-45-90 Triangle I

Consider a square with side length 1 cm. The square is cut along its diagonal. What is the length of the hypotenuse of the resulting triangle?

Answer: D

Justification: Using the Pythagorean Theorem:

The 45-45-90 Triangle II

Consider a square with side length 1 cm. The square is cut along its diagonal. What are the angles alpha (α) and beta (β)?

- A. $\alpha = 30^\circ, \beta = 30^\circ$
- B. $\alpha = 45^{\circ}, \beta = 45^{\circ}$

C.
$$\alpha = 50^\circ$$
, $\beta = 50^\circ$

- D. $\alpha = 60^{\circ}, \beta = 60^{\circ}$
- E. $\alpha = 90^\circ, \beta = 90^\circ$

Answer: B

Justification: Cutting the square along its diagonal divides the 90° corner of the square into two smaller 45° angles. (Note that this is only true for a square and not rectangles)

Check: $45^{\circ} + 45^{\circ} + 90^{\circ} = 180^{\circ}$, as required for triangles.

The 45-45-90 Triangle III

The triangle below is a 45-45-90 triangle. What is the length of the side labelled x?

A. x = 2 mB. x = 4 mC. $x = \sqrt{2} \text{ m}$ D. $x = 2\sqrt{2} \text{ m}$ E. $x = \sqrt{\sqrt{2}} \text{ m}$

Answer: A

Justification: The ratio of the side of a 45-45-90 triangle is $1:1:\sqrt{2}$. Multiplying this ratio by $\sqrt{2}$ so that the lengths of the shorter sides are $\sqrt{2}$. This gives a ratio of $\sqrt{2}:\sqrt{2}:2$.

The 45-45-90 Triangle IV

A 1 by 1 square is cut along both its diagonals. What is the distance from the center of the square to one of its corners (the distance labelled x)?

A.
$$x = \frac{1}{2}$$

B.
$$x = 2$$

C.
$$x = \frac{\sqrt{2}}{2}$$

D.
$$x = \sqrt{2}$$

E.
$$x = 2\sqrt{2}$$

Answer: C

Justification: Cutting the 1 by 1 square along its diagonals gives a 45-45-90 triangle with hypotenuse 1, so the ratio of the lengths of the sides is x : x :1. The ratio $1:1:\sqrt{2}$ must be scaled so that the hypotenuse is 1. Dividing by $\sqrt{2}$ gives

$$x: x: 1 = 1: 1: \sqrt{2}$$
 (Divide by $\sqrt{2}$)

$$x: x: 1 = \frac{1}{\sqrt{2}}: \frac{1}{\sqrt{2}}: 1$$

Therefore, equating the x gives:

$$x = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

