a place of mind

FACULTY OF EDUCATION
Department of
Curriculum and Pedagogy

Mathematics
 Trigonometry: Special Triangles (45-45-90)

Science and Mathematics Education Research Group

Special Triangles 45-45-90

The 45-45-90 Triangle I

Consider a square with side length 1 cm .
The square is cut along its diagonal. What is the length of the hypotenuse of the resulting triangle?

1 cm		A. 1
		3
		B. $\frac{3}{2}$
		C. 2
		D. $\sqrt{2}$
		E. $\sqrt{3}$

Solution

Answer: D

Justification: Using the Pythagorean Theorem:

$$
\begin{aligned}
1^{2}+1^{2} & =x^{2} \\
x^{2} & =2 \\
x & = \pm \sqrt{2} \\
x & =\sqrt{2} \mathrm{~cm}
\end{aligned}
$$

The 45-45-90 Triangle II

Consider a square with side length 1 cm .
The square is cut along its diagonal. What are the angles alpha (α) and beta (β)?

$$
\begin{array}{ll}
\text { A. } & \alpha=30^{\circ}, \beta=30^{\circ} \\
\text { B. } & \alpha=45^{\circ}, \beta=45^{\circ} \\
\text { C. } & \alpha=50^{\circ}, \beta=50^{\circ} \\
\text { D. } & \alpha=60^{\circ}, \beta=60^{\circ} \\
\text { E. } & \alpha=90^{\circ}, \beta=90^{\circ}
\end{array}
$$

Solution

Answer: B

Justification: Cutting the square along its diagonal divides the 90° corner of the square into two smaller 45° angles. (Note that this is only true for a square and not rectangles)

Check: $45^{\circ}+45^{\circ}+90^{\circ}=180^{\circ}$, as required for triangles.

The 45-45-90 Triangle III

The triangle below is a 45-45-90 triangle. What is the length of the side labelled x ?

$$
\begin{array}{ll}
\text { A. } & x=2 \mathrm{~m} \\
\text { B. } & x=4 \mathrm{~m} \\
\text { C. } & x=\sqrt{2} \mathrm{~m} \\
\text { D. } & x=2 \sqrt{2} \mathrm{~m} \\
\text { E. } & x=\sqrt{\sqrt{2}} \mathrm{~m}
\end{array}
$$

Solution

Answer: A

Justification: The ratio of the side of a 45-45-90 triangle is $1: 1: \sqrt{2}$. Multiplying this ratio by $\sqrt{2}$ so that the lengths of the shorter sides are $\sqrt{2}$. This gives a ratio of $\sqrt{2}: \sqrt{2}: 2$.

This may also be solved using the Pythagorean Theorem.

The 45-45-90 Triangle IV

A 1 by 1 square is cut along both its diagonals. What is the distance from the center of the square to one of its corners (the distance labelled x)?

1

A. $x=\frac{1}{2}$
B. $x=2$
C. $x=\frac{\sqrt{2}}{2}$
D. $x=\sqrt{2}$
E. $x=2 \sqrt{2}$

Solution

Answer: C

Justification: Cutting the 1 by 1 square along its diagonals gives a 45-45-90 triangle with hypotenuse 1 , so the ratio of the lengths of the sides is $\mathrm{x}: \mathrm{x}: 1$. The ratio $1: 1: \sqrt{2}$ must be scaled so that the hypotenuse is 1 . Dividing by $\sqrt{2}$ gives

$$
x: x: 1=1: 1: \sqrt{2} \quad(\text { Divide by } \sqrt{2})
$$

$$
x: x: 1=\frac{1}{\sqrt{2}}: \frac{1}{\sqrt{2}}: 1
$$

Therefore, equating the x gives:

$$
x=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

