

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Trigonometry: Reference Angles Science and Mathematics

Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2013

Trigonometric Ratios Using Reference Angles

Reference Angles I

How many different values of θ between 0° and 360° are there such that $sin(\theta) = 0.75$?

- A. 0 values of θ
- B. 1 value of θ
- C. 2 values of θ
- D. 3 values of θ
- E. 4 values of θ

Answer: C

Justification: If $sin(\theta) = 0.75$, then the y-coordinate on the unit circle must be 0.75. This occurs where the line y = 0.75 crosses the unit circle.

The diagram shows that the line $\stackrel{\bullet}{x}$ crosses the unit circle at 2 points, so there are 2 values for θ where $\sin(\theta) = 0.75$.

This problem set will go over how to find the other angle of θ .

Reference Angles II

Consider the 4 points that are 50° from the x-axis. What is the angle θ (the angle to P₂)?

- A. 100°
- B. 110°
- C. 120°
- D. 130°
- E. 150 °

Justification: The diagram above shows that the angle θ can be calculated by: $\theta = 180^{\circ} - 50^{\circ} = 130^{\circ}$.

The acute angle to the x-axis from 130° is 50°, which is known as the reference angle of 130°.

Reference Angles III

Justification: The y-coordinates of P_1 and P_2 are the same. Therefore $sin(50^\circ) = sin(130^\circ)$.

The x-coordinate of P_2 is the same as P_1 except negative. Therefore $cos(50^\circ) = -cos(130^\circ)$.

Reference Angles IV

For what value of θ in the 4th quadrant does $\cos(\theta) = \cos(50^\circ)$?

- A. $\theta = 230^{\circ}$
- B. $\theta = 290^{\circ}$
- C. $\theta = 300^{\circ}$
- D. $\theta = 310^{\circ}$
- E. None of the above

Answer: D

The angle to P_4 is $360^\circ - 50^\circ = 310^\circ$ (the reference angle to 310° is 50°). At this point we can see that the x-coordinate of P_1 and P_4 are equal, so:

$$\cos(310^\circ) = \cos(50^\circ)$$

Reference Angles V

The angle to P_3 is 230°. The reference angle of 230° is 50°. Which of the following statements is true?

- A. $sin(50^{\circ}) = sin(230^{\circ})$
- B. $\cos(50^{\circ}) = \cos(230^{\circ})$
- C. $tan(50^{\circ}) = tan(230^{\circ})$
- D. A and B are true
- E. A, B and C are true

Answer: C

All 3 trigonometric ratios are positive in the first quadrant. The only trigonometric ratio that is positive in the 3rd quadrant is tangent. Only $tan(50^\circ) = tan(230^\circ)$ is true.

However, since the x and y coordinates of P_3 are negative, we can also conclude that:

 $\sin(50^\circ) = -\sin(230^\circ)$

 $\cos(50^\circ) = -\cos(230^\circ)$

Summary

Summary

Reference Angles VI

The value of $cos(70^\circ)$ is approximately 0.34. At what other angle does $cos(\theta) = 0.34$, for $0^\circ \le \theta \le$ 360° ?

A.
$$\theta = 110^{\circ}$$

B.
$$\theta = 250^{\circ}$$

C.
$$\theta = 290^{\circ}$$

D. $\theta = 340^{\circ}$

E. $cos(70^\circ) = 0.34$ for only 1 value of θ

Answer: C

Justification: The value of $cos(\theta)$ is the same where the line x = 0.34intersects the unit circle (these 2 points have the same x-coordinate).

Cosine is positive in the 1st and 4th quadrants. The angle whose reference angle is 70° in the 4th quadrant is $360^{\circ} - 70^{\circ} = 290^{\circ}$.

 $\cos(270^{\circ}) = \cos(70^{\circ}) = 0.34$

The next questions expect students to be proficient at finding equivalent trigonometric ratios in other quadrants.

Reference Angles VII

Answer: D

Justification: Reflecting the point P_1 through the line y = x gives $P_2 = (\sin 70^\circ, \cos 70^\circ)$ by interchanging the x and y coordinates. However, the diagram shows P_2 can be written as ($\cos 20^\circ$, $\sin 20^\circ$). Equating these two expressions for P_2 gives:

 $(\sin 70^{\circ}, \cos 70^{\circ}) = (\cos 20^{\circ}, \sin 20^{\circ}).$

 $\cos(70^\circ) = \sin(20^\circ)$

Finally, the equivalent of $sin(20^\circ)$ in the 2nd quadrant is $sin(160^\circ)$.

In general: $cos(\theta) = sin(90^{\circ} - \theta)$

Alternative Solution

Answer: D

Justification: The graphs of sine and cosine are shown below:

Phase shifting the sine graph to the left by 90° (by replacing θ with θ +90°) gives the cosine graph. This gives us the identity $\cos(\theta) = \sin(\theta+90^\circ)$.

When θ =70°, cos(70°) = sin(160°), which agrees with our previous solution.

Reference Angles VIII

What is the smallest angle θ greater than 1000° such that $\sin(\theta) = \sin(255^\circ)$?

- A. $\theta = 1005^{\circ}$
- B. $\theta = 1155^{\circ}$
- C. $\theta = 1185^{\circ}$
- D. $\theta = 1335^{\circ}$
- E. No such value of θ exists

Answer: A

Justification: Adding multiples of 360° to θ does not change the value of sin(θ). So,

 $sin(255^{\circ}) = sin(615^{\circ}) = sin(975^{\circ}) = sin(1335^{\circ})$

However, this is not the smallest angle greater than 1000°. The equivalent of $sin(255^{\circ})$ in the 4th quadrant is $sin(285^{\circ})$. Adding multiples of 360° to 285° gives:

 $sin(285^{\circ}) = sin(645^{\circ}) = sin(1005^{\circ})$

Therefore the smallest angle of θ greater than 1000° where $sin(\theta) = sin(255^\circ)$ is $\theta = 1005^\circ$.

Reference Angles IX

Find the smallest positive angle θ where: $\tan \theta = \frac{\sin(99^\circ)}{\cos(9^\circ)}$

A.
$$\theta = 0^{\circ}$$

B.
$$\theta = 30^{\circ}$$

C.
$$\theta = 45^{\circ}$$

D. $\theta = 60^{\circ}$

E.
$$\theta = 90^{\circ}$$

Answer: C

Justification: The equivalent of sin(99°) in the first quadrant is sin(81°).

Using the same argument from question 7, we can conclude that:

$$sin(81^\circ) = cos(9^\circ)$$

Therefore:

$$\frac{\sin(99^\circ)}{\cos(9^\circ)} = 1 = \tan(45^\circ)$$