

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Trigonometry: Unit Circle

Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2013

The Unit Circle

The Unit Circle I

A circle with radius 1 is drawn with its center through the origin of a coordinate plane. Consider an arbitrary point P on the circle. What are the coordinates of P in terms of the angle θ ?

Press for hint

- A. $P(\theta, \theta)$
- B. $P(\sin\theta, \cos\theta)$
- C. $P(\cos\theta, \sin\theta)$
- D. $P(\sin^{-1}\theta, \cos^{-1}\theta)$
- E. $P(\cos^{-1}\theta, \sin^{-1}\theta)$

Answer: C

Justification: Draw a right triangle by connecting the origin to point P, and drawing a perpendicular line from P to the x-axis. This triangle has side lengths x_1 , y_1 , and hypotenuse 1.

The trigonometric ratios sine and cosine for this triangle are:

$$\cos(\theta) = \frac{x_1}{1} \implies x_1 = \cos(\theta)$$

$$\sin(\theta) = \frac{y_1}{1} \implies y_1 = \sin(\theta)$$

Therefore, the point P has the coordinates ($\cos \theta$, $\sin \theta$).

The Unit Circle II

Answer: E

Justification: The sides of the 30-60-90 triangle give the distance from P to the x-axis (y_1) and the distance from P to the y-axis (x_1) .

The Unit Circle III

What are the exact values of sin(30°) and cos(30°)?

Answer: A

Justification: From question 1 we learned that the x-coordinate of P is $cos(\theta)$ and the y-coordinate is $sin(\theta)$. In question 2, we found the x and y coordinates of P when $\theta = 30^{\circ}$ using the 30-60-90 triangle. Therefore, we have two equivalent expressions for the coordinates of P:

(From question 1)

$$P(\cos 30^{\circ}, \sin 30^{\circ}) = P\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$
(From question 1)

$$\sin 30^{\circ} = \frac{1}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
(From question 2)

You should now also be able to find the exact values of sin(60°) and cos(60°) using the 30-60-90 triangle and the unit circle. If not, review the previous questions.

The Unit Circle IV

The coordinates of point P are shown in the diagram. Determine the angle θ .

A.
$$\theta = 30^{\circ}$$

B.
$$\theta = 45^{\circ}$$

C.
$$\theta = 60^{\circ}$$

D.
$$\theta = 75^{\circ}$$

E. Cannot be done without a calculator

Answer: C

Justification: The coordinates of P are given, so we can draw the following triangle:

The ratio between the side lengths of the triangle are the same as a 30-60-90 triangle. This shows that $\theta = 60^{\circ}$.

The Unit Circle V

Consider an arbitrary point P on the unit circle. The line segment OP makes an angle θ with the x-axis. What is the value of tan(θ)?

У

A.
$$\tan(\theta) = \frac{1}{x_1}$$

B. $\tan(\theta) = \frac{1}{y_1}$
C. $\tan(\theta) = \frac{x_1}{y_1}$
D. $\tan(\theta) = \frac{y_1}{x_1}$

E. Cannot be determined

Answer: D

Justification: Recall that: $x_1 = \cos(\theta)$, $y_1 = \sin(\theta)$

Since the tangent ratio of a right triangle can be found by dividing the opposite side by the adjacent side, the diagram shows:

$$\tan(\theta) = \frac{y_1}{x_1}$$

Using the formulas for x_1 and y_1 shown above, we can also define tangent as:

 $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$

Summary

The diagram shows the points on the unit circle with $\theta = 30^{\circ}$, 45°, and 60°, as well as their coordinate values.

Summary

The following table summarizes the results from the previous questions.

	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$
sin(θ)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos(θ)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan(θ)	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

The Unit Circle VI

 (x_1, y_1)

P

 $\mathbf{\uparrow} \mathbf{P}_2 = (x_2, y_2)$

Consider the points where the unit circle intersects the positive x-axis and the positive y-axis. What are the coordinates of P_1 and P_2 ?

A.
$$P_1 = (1, 0), P_2 = (0, 1)$$

B.
$$P_1 = (0,1), P_2 = (1,0)$$

C.
$$P_1 = (1,1), P_2 = (0,0)$$

D.
$$P_1 = (0, 0), P_2 = (1, 1)$$

E. None of the above

Answer: A

Justification: Any point on the x-axis has a y-coordinate of 0. P_1 is on the x-axis as well as the unit circle which has radius 1, so it must have coordinates (1,0).

Similarly, any point is on the y-axis when the x-coordinate is 0. P_2 has coordinates (0, 1).

The Unit Circle VII

What are values of $sin(0^{\circ})$ and $sin(90^{\circ})$? *Hint:* Recall what sin θ represents on the graph $P_2 = (0, 1)$ A. $\sin(0^\circ) = 0$, $\sin(90^\circ) = 0$ B. $\sin(0^{\circ}) = 1$, $\sin(90^{\circ}) = 0$ C. $\sin(0^{\circ}) = 0$, $\sin(90^{\circ}) = 1$ D. $\sin(0^{\circ}) = 1$, $\sin(90^{\circ}) = 1$ E. None of the above $P_1 = (0, 1)$ Х

Answer: C

Justification: Point P₁ makes a 0° angle with the x-axis. The value of $sin(0^\circ)$ is the y-coordinate of P₁, so $sin(0^\circ) = 0$.

The Unit Circle VIII

For what values of θ is sin(θ) positive?

- A. $0^{\circ} < \theta < 90^{\circ}$
- B. $0^{\circ} < \theta < 180^{\circ}$
- C. $-90^\circ < \theta < 90^\circ$
- D. $0^{\circ} < \theta < 360^{\circ}$
- E. None of the above

Answer: B

Justification: When the y coordinate of the points on the unit circle are positive (the points highlighted red) the value of $sin(\theta)$ is positive.

Verify that $cos(\theta)$ is positive when θ is in quadrant I (0°< θ <90°) and quadrant IV (270°< θ <360°), which is when the x-coordinate of the points is positive.

The Unit Circle IX

Answer: B

Justification: The point P_1 is below the x-axis so its y-coordinate is negative, which means $sin(\theta)$ is negative. The angle between P_1 and the x-axis is $210^\circ - 180^\circ = 30^\circ$.

$$\sin(210^\circ) = -\sin(30^\circ)$$
$$= -\frac{1}{2}$$

The Unit Circle X

What is the value of tan(90°)?

A. 0 B. 1 C. $\sqrt{3}$ D. $\frac{1}{\sqrt{3}}$ E. None of the above

The Unit Circle XI

Answer: B

Justification: In order for tan(θ) to be negative, sin(θ) and cos(θ) must have opposite signs. In the 2nd quadrant, sine is positive while cosine is negative. In the X 4th quadrant, sine is negative while cosine is positive.

Therefore, $tan(\theta)$ is negative in the 2nd and 4th quadrants.

Summary

The following table summarizes the results from the previous questions.

	$\theta = 0$	$\theta = 90^{\circ}$	$\theta = 180^{\circ}$	$\theta = 270^{\circ}$
sin(θ)	0	1	0	-1
cos(θ)	1	0	-1	0
tan(θ)	0	undefined	0	undefined

Summary

