a place of mind

Mathematics
 Trigonometry: Unit Circle

Science and Mathematics Education Research Group

The Unit Circle

The Unit Circle I

A circle with radius 1 is drawn with its center through the origin of a coordinate plane. Consider an arbitrary point P on the circle. What are the coordinates of P in terms of the angle θ ?

Press for hint

A. $P(\theta, \theta)$
B. $P(\sin \theta, \cos \theta)$
C. $P(\cos \theta, \sin \theta)$
D. $P\left(\sin ^{-1} \theta, \cos ^{-1} \theta\right)$
E. $\quad P\left(\cos ^{-1} \theta, \sin ^{-1} \theta\right)$

Solution

Answer: C

Justification: Draw a right triangle by connecting the origin to point P, and drawing a perpendicular line from P to the $x-$ axis. This triangle has side lengths x_{1}, y_{1}, and hypotenuse 1 .

The trigonometric ratios sine and cosine for this triangle are:

$$
\begin{aligned}
& \cos (\theta)=\frac{x_{1}}{1} \Rightarrow x_{1}=\cos (\theta) \\
& \sin (\theta)=\frac{y_{1}}{1} \Rightarrow y_{1}=\sin (\theta)
\end{aligned}
$$

Therefore, the point P has the coordinates $(\cos \theta, \sin \theta)$.

The Unit Circle II

The line segment OP makes a 30° angle with

Hint: What are the lengths of the sides of the triangle?
A. $P(2,1)$
B. $P(\sqrt{3}, 2)$
C. $P(2, \sqrt{3})$
D. $P\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
E. $\quad \mathrm{P}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Solution

Answer: E

Justification: The sides of the 30-60-90 triangle give the distance from P to the x-axis $\left(y_{1}\right)$ and the distance from P to the y-axis (x_{1}).

0

The Unit Circle III

What are the exact values of $\sin \left(30^{\circ}\right)$ and $\cos \left(30^{\circ}\right)$?

A. $\quad \sin \left(30^{\circ}\right)=\frac{1}{2}, \quad \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
B. $\quad \sin \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}, \quad \cos \left(30^{\circ}\right)=\frac{1}{2}$
C. $\sin \left(30^{\circ}\right)=1, \quad \cos \left(30^{\circ}\right)=\sqrt{3}$
D. $\sin \left(30^{\circ}\right)=\sqrt{3}, \quad \cos \left(30^{\circ}\right)=1$
E. Cannot be done without a calculator

Solution

Answer: A

Justification: From question 1 we learned that the x-coordinate of P is $\cos (\theta)$ and the y-coordinate is $\sin (\theta)$. In question 2, we found the x and y coordinates of P when $\theta=30^{\circ}$ using the 30-60-90 triangle. Therefore, we have two equivalent expressions for the coordinates of P :
(From question 1)

$$
\sin 30^{\circ}=\frac{1}{2}, \quad \cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

(From question 2)

You should now also be able to find the exact values of $\sin \left(60^{\circ}\right)$ and $\cos \left(60^{\circ}\right)$ using the 30-60-90 triangle and the unit circle. If not, review the previous questions.

The Unit Circle IV

Solution

Answer: C
Justification: The coordinates of P are given, so we can draw the following triangle:

The ratio between the side lengths of the triangle are the same as a 30-6090 triangle. This shows that $\theta=60^{\circ}$.

The Unit Circle V

Consider an arbitrary point P on the unit circle. The line segment OP makes an angle θ with the x-axis. What is

A. $\tan (\theta)=\frac{1}{x_{1}}$
B. $\tan (\theta)=\frac{1}{y_{1}}$
C. $\tan (\theta)=\frac{x_{1}}{y_{1}}$
D. $\tan (\theta)=\frac{y_{1}}{x_{1}}$
E. Cannot be determined

Solution

Answer: D

Justification: Recall that: $x_{1}=\cos (\theta), \quad y_{1}=\sin (\theta)$

Since the tangent ratio of a right triangle can be found by dividing the opposite side by the adjacent side, the diagram shows:

$$
\tan (\theta)=\frac{y_{1}}{x_{1}}
$$

Using the formulas for x_{1} and y_{1} shown above, we can also define tangent as:

$$
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}
$$

Summary

Summary

The following table summarizes the results from the previous questions.

	$\theta=30^{\circ}$	$\theta=45^{\circ}$	$\theta=60^{\circ}$
$\sin (\theta)$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos (\theta)$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\tan (\theta)$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

The Unit Circle VI

Consider the points where the unit circle intersects the positive x-axis and the positive y-axis. What

Solution

Answer: A
Justification: Any point on the x-axis has a y-coordinate of $0 . P_{1}$ is on the x-axis as well as the unit circle which has radius 1 , so it must have coordinates $(1,0)$.

The Unit Circle VII

What are values of $\sin \left(0^{\circ}\right)$ and $\sin \left(90^{\circ}\right)$?

Solution

Answer: C

Justification: Point P_{1} makes a 0° angle with the x-axis. The value of $\sin \left(0^{\circ}\right)$ is the y-coordinate of P_{1}, so $\sin \left(0^{\circ}\right)=0$.

The Unit Circle VIII

$\begin{array}{ll}\text { A. } & 0^{\circ}<\theta<90^{\circ} \\ \text { B. } & 0^{\circ}<\theta<180^{\circ} \\ \text { C. } & -90^{\circ}<\theta<90^{\circ} \\ \text { D. } & 0^{\circ}<\theta<360^{\circ} \\ \text { E. } & \text { None of the above }\end{array}$

Solution

The Unit Circle IX

A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $-\frac{\sqrt{3}}{2}$
E. None of the above

Solution

Answer: B
Justification: The point P_{1} is below the x-axis so its y-coordinate is negative, which means $\sin (\theta)$ is negative. The angle between P_{1} and the x-axis is $210^{\circ}-180^{\circ}=30^{\circ}$.

$\sin \left(210^{\circ}\right)=-\sin \left(30^{\circ}\right)$
 $$
=-\frac{1}{2}
$$

The Unit Circle X

What is the value of $\tan \left(90^{\circ}\right)$?
A. 0
B. 1
C. $\sqrt{3}$
D. $\frac{1}{\sqrt{3}}$
E. None of the above

Solution

Answer: E

Justification: Recall that the tangent of an angle is defined as:

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

When $\theta=90^{\circ}$,

$$
\tan 90^{\circ}=\frac{\sin 90^{\circ}}{\cos 90^{\circ}}=\frac{y_{1}}{x_{1}}=\frac{1}{0}
$$

Since we cannot divide by zero, $\tan 90^{\circ}$ is undefined.

The Unit Circle XI

A. II
B. III
C. IV
D. I and III
E. II and IV

Solution

Answer: B

Justification: In order for $\tan (\theta)$ to be negative, $\sin (\theta)$ and $\cos (\theta)$ must have opposite signs. In the $2^{\text {nd }}$ quadrant, sine is positive while cosine is negative. In the $4^{\text {th }}$ quadrant, sine is negative while cosine is positive.
Therefore, $\tan (\theta)$ is negative in the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants.

Summary

The following table summarizes the results from the previous questions.

	$\theta=0$	$\theta=90^{\circ}$	$\theta=180^{\circ}$	$\theta=270^{\circ}$
$\sin (\theta)$	0	1	0	-1
$\cos (\theta)$	1	0	-1	0
$\tan (\theta)$	0	undefined	0	undefined

Summary

