a place of mind

FACULTY OF EDUCATION
Department of
Curriculum and Pedagogy

Physics

Forces: Tension

Science and Mathematics Education Research Group

Tension Forces

$?$

F

Tension Forces I

Two masses on a frictionless table are connected by a string with negligible mass. The 10 kg mass is pulled with a force of 30 N to the right. What is the tension in the string?

A. 0 N
B. 5 N
C. 10 N
D. 15 N
E. 30 N

Solution

Answer: C

Justification: The two masses can be treated as a single 15 kg mass. From $\mathbf{F}=\mathrm{ma}$, the acceleration of the two blocks must be $2 \mathrm{~m} / \mathrm{s}$.

In order for the 10 kg to accelerate at $2 \mathrm{~m} / \mathrm{s}^{2}$, it must experience a net force of 20 N (a 10 N force must pull the block left). The 5 kg block must experience a net force of 10 N (a 10 N force must pull the block right). Notice that the 10 N tension force satisfies both conditions.

Tension Forces II

Three blocks on a frictionless table are connected by two strings with negligible mass. Which arrangement will minimize the tension in the two strings (minimize $\mathrm{T}_{1}+\mathrm{T}_{2}$)?
B.
A.

C.

D. $T_{1}+T_{2}$ is the same in all three cases

Solution

Answer: A

Justification: The string of blocks will be accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$.
Therefore, the 2 kg block must experience a net force of 2 N , while the 1 kg blocks experience 1 N .
A.

$$
\mathrm{T}_{1}+\mathrm{T}_{2}=3 \mathrm{~N}
$$

B.

C.

Tension Forces III

The three blocks are now arranged vertically as shown. A 40 N force is applied to the top block to prevent the blocks from falling. Which arrangement will minimize the tension in the two strings (minimize T_{1} $\left.+\mathrm{T}_{2}\right)$? (Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

D. $T_{1}+T_{2}$ is the same in all three cases

Solution

Answer: A Justification: When the 2 kg block is on top, there is less tension in the strings below it. The tension of a string only depends on the mass of the blocks below it. The net force on each of the small blocks is 10 N , and 20 N on the larger block.

Tension Forces IV

A hundred 1 kg masses are strung together on a frictionless table. A force of 100 N is applied to the last mass. What is the tension in the string connecting the $49^{\text {th }}$ block to the $50^{\text {th }}$ block?

A. 1 N
B. 49 N
C. 50 N
D. 51 N
E. 100 N

Solution

Answer: B

Justification: Treat the one hundred 1 kg masses as a single 100 kg mass. The 100 kg mass will accelerate $1 \mathrm{~m} / \mathrm{s}^{2}$ due to the 100 N force acting on it. Since all the pieces are connected, every 1 kg piece will accelerate at $1 \mathrm{~m} / \mathrm{s}^{2}$. In order for a 1 kg mass to accelerate at $1 \mathrm{~m} / \mathrm{s}^{2}$, it must experience a net force of 1 N . The tension in a string must therefore be 1 N higher than the previous string.

Notice that the net force on the $\mathrm{n}^{\text {th }}$ block is $\mathrm{F}_{\mathrm{n}}=\mathrm{n}-(\mathrm{n}-1)=1 \mathrm{~N}$.

Tension Forces V

One hundred blocks are strung together on a frictionless table. The $n^{\text {th }}$ block in the chain has a mass of $n \mathrm{~kg}$. A force of 5050 N is applied to the last block. What is the tension in the string connecting the $49^{\text {th }}$ block to the $50^{\text {th }}$ block?

Solution

Answer: C

Justification: Treat the one hundred masses as a single 5050 kg block.

$$
S_{100}=\frac{100(1+100)}{2}=5050
$$

Since 5050 N is applied to this 5050 kg block, every piece accelerates at $1 \mathrm{~m} / \mathrm{s}^{2}$. Thus every piece must experience a net force equal to its mass. Using the following property of summations:

$$
S_{n}-S_{n-1}=n
$$

$S_{49}-S_{48}=1225-1176=49 \mathrm{~N}$

Tension Forces VI

The three blocks are now placed on a table with friction and pulled with a force of 6 N as shown in the diagrams. The table now applies a friction force of 2 N on the blocks. In the scenario below, what are the tensions in each string?
A. $\mathrm{T}_{1}=2 \mathrm{~N}$ and $\mathrm{T}_{2}=3 \mathrm{~N}$
B. $\mathrm{T}_{1}=5 \mathrm{~N}$ and $\mathrm{T}_{2}=4 \mathrm{~N}$
C. $T_{1}=4 \mathrm{~N}$ and $T_{2}=5 \mathrm{~N}$
D. $T_{1}=4 \mathrm{~N}$ and $\mathrm{T}_{2}=7 \mathrm{~N}$
E. $\mathrm{T}_{1}=4 \mathrm{~N}$ and $\mathrm{T}_{2}=3 \mathrm{~N}$

Solution

Answer: C

Justification: Treat the 3 blocks as one unit and use the net force to determine that the blocks will have an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$. The individual tensions can be calculated by writing out a net force equation for the different systems of blocks, and then using the net force to solve for the unknown tension.

$$
\begin{aligned}
& \mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2} \\
& \underset{\sim}{2 \mathrm{~N}} \underset{\longrightarrow}{\longleftrightarrow} 2 \mathrm{~kg} \xrightarrow{\longrightarrow} \mathrm{~T}_{1}=4 \mathrm{~N} \\
& \begin{aligned}
F_{n e t}= & m a=2 N \\
F_{\text {net }}= & T_{1}-(2 N) \\
& T_{1}=4 N
\end{aligned} \\
& \mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2} \\
& F_{\text {net }}=\mathrm{ma}=3 \mathrm{~N} \text { treat as a single } 3 \mathrm{~kg} \text { block } \\
& F_{\text {net }}=T_{2}-(2 N) \\
& \mathrm{T}_{2}=5 \mathrm{~N}
\end{aligned}
$$

