

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Physics Forces: Tension

Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2013

Tension Forces

Tension Forces I

Two masses on a frictionless table are connected by a string with negligible mass. The 10 kg mass is pulled with a force of 30 N to the right. What is the tension in the string?

- A. 0 N
- B. 5 N
- C. 10 N
- D. 15 N
- E. 30 N

Answer: C

Justification: The two masses can be treated as a single 15 kg mass. From $\mathbf{F} = \mathbf{ma}$, the acceleration of the two blocks must be 2 m/s.

In order for the 10 kg to accelerate at 2 m/s², it must experience a net force of 20 N (a 10 N force must pull the block left). The 5 kg block must experience a net force of 10 N (a 10 N force must pull the block right). Notice that the 10 N tension force satisfies both conditions.

Tension Forces II

Three blocks on a frictionless table are connected by two strings with negligible mass. Which arrangement will minimize the tension in the two strings (minimize $T_1 + T_2$)?

D. $T_1 + T_2$ is the same in all three cases

Answer: A

Justification: The string of blocks will be accelerating at 1 m/s². Therefore, the 2 kg block must experience a net force of 2 N, while the 1 kg blocks experience 1 N.

A.

$$1 \text{ kg} \xrightarrow{1 \text{ N}} 1 \text{ kg} \xrightarrow{2 \text{ N}} 2 \text{ kg} \xrightarrow{4 \text{ N}} T_1 + T_2 = 3 \text{ N}$$
B.

$$1 \text{ kg} \xrightarrow{1 \text{ N}} 2 \text{ kg} \xrightarrow{3 \text{ N}} 1 \text{ kg} \xrightarrow{4 \text{ N}} T_1 + T_2 = 4 \text{ N}$$
C.

$$2 \text{ kg} \xrightarrow{2 \text{ N}} 1 \text{ kg} \xrightarrow{3 \text{ N}} 1 \text{ kg} \xrightarrow{4 \text{ N}} T_1 + T_2 = 5 \text{ N}$$

Tension Forces III

The three blocks are now arranged vertically as shown. A 40 N force is applied to the top block to prevent the blocks from falling. Which arrangement will minimize the tension in the two strings (minimize $T_1 + T_2$)? (Assume g = 10 m/s²)

D. $T_1 + T_2$ is the same in all three cases

Answer: A

Justification: When the 2 kg block is on top, there is less tension in the strings below it. The tension of a string only depends on the mass of the blocks below it. The net force on each of the small blocks is 10 N, and 20 N on the larger block.

Tension Forces IV

A hundred 1 kg masses are strung together on a frictionless table. A force of 100 N is applied to the last mass. What is the tension in the string connecting the 49th block to the 50th block?

Answer: B

Justification: Treat the one hundred 1 kg masses as a single 100 kg mass. The 100 kg mass will accelerate 1 m/s² due to the 100 N force acting on it. Since all the pieces are connected, every 1 kg piece will accelerate at 1 m/s². In order for a 1 kg mass to accelerate at 1 m/s², it must experience a net force of 1 N. The tension in a string must therefore be 1 N higher than the previous string. 48 N 49 N 50 N

Tension Forces V

One hundred blocks are strung together on a frictionless table. The n^{th} block in the chain has a mass of n kg. A force of 5050 N is applied to the last block. What is the tension in the string connecting the 49th block to the 50th block?

Answer: C

Justification: Treat the one hundred masses as a single 5050 kg block. 100(1+100)

$$S_{100} = \frac{100(1+100)}{2} = 5050$$

Since 5050 N is applied to this 5050 kg block, every piece accelerates at 1 m/s². Thus every piece must experience a net force equal to its mass. Using the following property of summations:

Tension Forces VI

The three blocks are now placed on a table **with friction** and pulled with a force of 6 N as shown in the diagrams. The table now applies a friction force of 2 N on the blocks. In the scenario below, what are the tensions in each string?

A.
$$T_1 = 2 N$$
 and $T_2 = 3 N$

B.
$$T_1 = 5 \text{ N}$$
 and $T_2 = 4 \text{ N}$

C.
$$T_1 = 4 \text{ N}$$
 and $T_2 = 5 \text{ N}$

D.
$$T_1 = 4 \text{ N}$$
 and $T_2 = 7 \text{ N}$

E.
$$T_1 = 4 \text{ N}$$
 and $T_2 = 3 \text{ N}$

Answer: C

Justification: Treat the 3 blocks as one unit and use the net force to determine that the blocks will have an acceleration of 1 m/s². The individual tensions can be calculated by writing out a net force equation for the different systems of blocks, and then using the net force to solve for the unknown tension.

$$a = 1 \text{ m/s}^{2}$$

$$T_{2} = 5 \text{ N}$$

$$F_{net} = ma = 2 \text{ N}$$

$$F_{net} = ma = 3 \text{ N} \text{ treat as a single 3 kg block}$$

$$F_{net} = T_{2} - (2 \text{ N})$$

$$T_{2} = 5 \text{ N}$$