a place of mind

FACULTY OF EDUCATION
Department of
Curriculum and Pedagogy

Mathematics

Relations and Functions:

 Multiplying Polynomials Science and Mathematics Education Research Group
Factoring Polynomials II

$$
\begin{array}{ll}
a(b+c)=a b+a c & \text { Multiplying } \\
a b+a c=a(b+c) & \text { Factoring }
\end{array}
$$

Multiplying Polynomials I

Multiply completely:

$$
\left(2 x^{2}\right)\left(6 x^{3}\right)
$$

A. $8 x^{5}$
B. $8 x^{6}$
C. $12 x^{5}$
D. $12 x^{6}$
E. $26 x^{5}$

Solution

Answer: C

Justification:

Multiplying polynomials is to multiply factors in a division statement into one single expression.
In order to multiply polynomials, we multiply coefficients with coefficients, and variables with variables.

For coefficients, we multiply 2 with 6 , which is 12 .
For variables, we multiply x^{2} with x^{3}, which is $x^{2+3}=x^{5}$

$$
\left(2 x^{2}\right)\left(6 x^{3}\right)=(2 \times 6) \times\left(x^{2} \times x^{3}\right)
$$

Multiplying them back together, we get $12 x^{5}$. Our answer is C.

Multiplying Polynomials II

Multiply completely:

$$
\left(2 x^{2} y^{2}\right)\left(-3 x^{3} y^{-2} z\right)
$$

A. $-6 x^{5} z$
B. $-6 x^{6} z$
C. $-6 x^{5} y^{-4} z$
D. $-6 x^{6} y^{-4} z$
E. $-x^{5} z$

Solution

Answer: A

Justification:

In order to multiply polynomials, we multiply coefficients with coefficients, and variables with variables

For coefficients, we multiply 2 with -3 , which is -6 .
For x , we multiply x^{2} with x^{3}, which is $x^{2+3}=x^{5}$
For y, we multiply y^{2} with y^{-2}, which is $y^{2-2}=y^{0}=1$
For z, there is only 1 z ; thus it is just z
$\left(2 x^{2} y^{2}\right)\left(-3 x^{3} y^{-2} z\right)=(2 \times 6) \times\left(x^{2} \times x^{3}\right) \times\left(y^{2} \times y^{-2}\right) \times z$
Multiplying them back together, we get $-6 x^{5} z$. Our answer is A.

Multiplying Polynomials III

Expand:

$$
(x-3)(x+4)
$$

A. $\left(x^{2}-1\right)$
B. $\left(x^{2}-12\right)$
C. $\left(x^{2}+x-12\right)$
D. $\left(x^{2}-x-12\right)$
E. $\left(x^{2}-7 x\right)$

Solution

Answer: C

Justification:

In order to multiply polynomials with more than 1 term, we have to "distribute" our multiplication to each term as such!

Multiplying each term over and under, we get:

$$
(x-3)(x+4)=x^{2}+4 x-3 x-12=x^{2}+x-12
$$

Our answer is C .

Multiplying Polynomials IV

Expand:

$$
(3 x-2)^{2}
$$

A. $\left(9 x^{2}-4\right)$
B. $\left(9 x^{2}+12 x+4\right)$
C. $\left(9 x^{2}+12 x-4\right)$
D. $\left(9 x^{2}-12 x-4\right)$
E. $\left(9 x^{2}-12 x+4\right)$

Solution

Answer: E

$$
(3 x-2)^{2} \neq(3 x)^{2}-(2)^{2}
$$

Justification:

Notice that this question can also be written as a multiple of two factors as such!

Multiplying each term over and under, we get:
$(3 x-2)(3 x-2)=9 x^{2}-6 x-6 x+4=9 x^{2}-12 x+4$
Our answer is E .

Multiplying Polynomials V

Expand:

$$
-(2 x-1)(x+1)^{2}
$$

A. $\left(-2 x^{3}+2 x^{2}+x+1\right)$
B. $-\left(2 x^{2}+x-1\right)^{2}$
C. $-\left(2 x^{3}+3 x^{2}-1\right)$
D. $\left(-2 x^{3}-3 x^{2}+1\right)$
E. $-3 x^{2}$

Solution

Answer: D

$$
(x+1)^{2} \neq\left(x^{2}+1^{2}\right)
$$

Justification:

Notice that this question cannot be written as a multiple of two factors as such!

Due to the order of operation, we must evaluate the exponents first!

$$
(x+1)^{2}=(x+1)(x+1)=x^{2}+x+x+1=x^{2}+2 x+1
$$

Solution Continued

Now, this question can be written as multiple of two factors as such!

$$
\begin{aligned}
(2 x-1)\left(x^{2}+2 x+1\right) & =2 x^{3}+4 x^{2}+2 x-x^{2}-2 x-1 \\
& =2 x^{3}+3 x^{2}-1
\end{aligned}
$$

Since there is a negative sign in front of it, we multiply -1 to all terms.

$$
-\left(2 x^{3}+3 x^{2}-1\right)=-2 x^{3}-3 x^{2}+1
$$

Thus, our answer is D.

Multiplying Polynomials VI

Expand:

$$
(x+y)^{3}
$$

A. $x^{3}+y^{3}$
B. $x^{3}+2 x^{2} y^{2}+y^{3}$
C. $x^{3}+x^{2} y+x y^{2}+y^{3}$
D. $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
E. $x^{3}+6 x^{2} y^{2}+y^{3}$

Solution

Answer: D

$$
(x+y)^{3} \neq\left(x^{3}+y^{3}\right)
$$

Justification:
Notice that this question can be written as a multiple of three factors as such!

$$
(x+y)(x+y)(x+y)
$$

Due to the order of operation, we must evaluate the first exponents first!

$$
(x+y)(x+y)=x^{2}+x y+x y+y^{2}=x^{2}+2 x y+y^{2}
$$

Then, we multiply this result with the last $(x+y)$ factor

$$
\begin{aligned}
\left(x^{2}+2 x y+y^{2}\right)(x+y) & =x^{3}+x^{2} y+2 x^{2} y+2 x y^{2}+x y^{2}+1 \\
& =x^{3}+3 x^{2} y+3 x y^{2}+1
\end{aligned}
$$

Thus, the answer is D.

Multiplying Polynomials VII

Expand:

$$
(x-y)^{5}
$$

A. $x^{5}+5 x^{4}-5 y^{4}-y^{5}$
B. $x^{5}+5 x^{4}+10 x^{3} y^{2}-5 y^{4}-y^{5}$
C. $-x^{5}-5 x^{4} y-10 x^{3} y^{2}-10 x^{2} y^{3}-5 x^{1} y^{4}-y^{5}$
D. $x^{5}-5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}-5 x^{1} y^{4}-y^{5}$
E. $x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}$

Solution

Answer: E

Justification:

We can solve this problem by using Pascal's triangle
Pascal's triangle is a triangular model that starts with 1 at the top, continues to place number below in a triangular shape, and has pattern that each number of a row is the two numbers above added together excluding the edges.

It is found that $(n+1)^{\text {th }}$ row of the Pascal's triangle represents the coefficients of the terms in a polynomial $(x+y)^{n}$, where n is a positive integer.

Solution Continued

Since $\mathrm{n}=5$ for our example, we know that the coefficients of the terms of $(x-y)^{5}$ are at the $6^{\text {th }}$ row of the Pascal's triangle. (1)

However, we have a negative sign between x and $\mathrm{y}:(x-y)^{5}$

This means that each term will have an alternating sign in a descending order from the first term. (2)

For example, when we have $(x-y)^{2}$, we should get: $x^{2}-2 x y+y^{2}$. As you can see, the coefficients of these terms are +1 ,
-2 , and +1 , respectively. They alternate sign as they progress.

Solution Continued

Thus, incorporating both (1) and (2), our solution will look as below:

$$
x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}
$$

Thus, our answer is E.

$1510 \quad 10 \quad 5 \quad 1$

