

a place of mind

FACULTY OF EDUCATION

Department of Curriculum and Pedagogy

Mathematics Relations and Functions: Multiplying Polynomials Science and Mathematics Education Research Group

Supported by UBC Teaching and Learning Enhancement Fund 2012-2015

Factoring Polynomials II

$$a(b+c) = ab + ac$$
Multiplying $ab + ac = a(b+c)$ Factoring

Retrieved from http://catalog.flatworldknowledge.com/bookhub/reader/6329?e=fwk-redden-ch06_s01

Multiplying Polynomials I

Multiply completely:

 $(2x^2)(6x^3)$

A. $8x^5$ B. $8x^6$ C. $12x^5$ D. $12x^6$ E. $26x^5$

Answer: C

Justification:

Multiplying polynomials is to multiply factors in a division statement into one single expression.

In order to multiply polynomials, we multiply coefficients with coefficients, and variables with variables.

For coefficients, we multiply 2 with 6, which is 12.

For variables, we multiply x^2 with x^3 , which is $x^{2+3} = x^5$

 $(2x^2)(6x^3) = (2 \times 6) \times (x^2 \times x^3)$

Multiplying them back together, we get $12x^5$. Our answer is C.

Multiplying Polynomials II

Multiply completely:

$$(2x^2y^2)(-3x^3y^{-2}z)$$

A. $-6x^5z$ B. $-6x^6z$ C. $-6x^5y^{-4}z$ D. $-6x^6y^{-4}z$ E. $-x^5z$

Answer: A

Justification:

In order to multiply polynomials, we multiply coefficients with coefficients, and variables with variables

For coefficients, we multiply 2 with -3, which is -6.

For x, we multiply x^2 with x^3 , which is $x^{2+3} = x^5$

For y, we multiply y^2 with y^{-2} , which is $y^{2-2} = y^0 = 1$

For z, there is only 1 z; thus it is just z

$$(2x^2y^2)\left(-3x^3y^{-2}z\right) = (2\times 6)\times (x^2\times x^3)\times (y^2\times y^{-2})\times z$$

Multiplying them back together, we get $-6x^5z$. Our answer is A.

Multiplying Polynomials III

Expand:

$$(x-3)(x+4)$$

A. $(x^{2}-1)$ B. $(x^{2}-12)$ C. $(x^{2}+x-12)$ D. $(x^{2}-x-12)$ E. $(x^{2}-7x)$

Answer: C

Justification:

In order to multiply polynomials with more than 1 term, we have to "distribute" our multiplication to each term as such!

Multiplying each term over and under, we get:

$$(x-3)(x+4) = x^2 + 4x - 3x - 12 = x^2 + x - 12$$

Our answer is C.

Multiplying Polynomials IV

Expand:

$$(3x-2)^2$$

A.
$$(9x^2 - 4)$$

B. $(9x^2 + 12x + 4)$
C. $(9x^2 + 12x - 4)$
D. $(9x^2 - 12x - 4)$
E. $(9x^2 - 12x + 4)$

Answer: E
Justification:
$$(3x - 2)^2 \neq (3x)^2 - (2)^2$$

Notice that this question can also be written as a multiple of two factors as such!

$$(3x-2)(3x-2)$$

Multiplying each term over and under, we get:

$$(3x-2)(3x-2) = 9x^2 - 6x - 6x + 4 = 9x^2 - 12x + 4$$

Our answer is **E**.

Multiplying Polynomials V

Expand:

$$-(2x-1)(x+1)^2$$

A.
$$(-2x^{3} + 2x^{2} + x + 1)$$

B. $-(2x^{2} + x - 1)^{2}$
C. $-(2x^{3} + 3x^{2} - 1)$
D. $(-2x^{3} - 3x^{2} + 1)$
E. $-3x^{2}$

Answer: D
Justification:
$$(x+1)^2 \neq (x^2+1^2)$$

Notice that this question cannot be written as a multiple of two factors as such!

Due to the order of operation, we must evaluate the exponents first!

$$(x+1)^2 = (x+1)(x+1) = x^2 + x + x + 1 = x^2 + 2x + 1$$

Solution Continued

Now, this question can be written as multiple of two factors as such!

$$-(2x-1)(x^2+2x+1)$$

$$(2x-1)(x^{2}+2x+1) = 2x^{3} + 4x^{2} + 2x - x^{2} - 2x - 1$$

= 2x³ + 3x² - 1

Since there is a negative sign in front of it, we multiply -1 to all terms.

$$-(2x^3 + 3x^2 - 1) = -2x^3 - 3x^2 + 1$$

Thus, our answer is **D**.

Multiplying Polynomials VI

Expand:

 $(x + y)^3$

A. $x^{3} + y^{3}$ B. $x^{3} + 2x^{2}y^{2} + y^{3}$ C. $x^{3} + x^{2}y + xy^{2} + y^{3}$ D. $x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$ E. $x^{3} + 6x^{2}y^{2} + y^{3}$

Answer: D
Justification:
$$(x+y)^3 \neq (x^3 + y^3)$$

Notice that this question can be written as a multiple of three factors as such!

$$(x+y) (x+y) (x+y)$$

Due to the order of operation, we must evaluate the first exponents first!

$$(x + y)(x + y) = x^{2} + xy + xy + y^{2} = x^{2} + 2xy + y^{2}$$

Then, we multiply this result with the last (x + y) factor

$$(x^{2} + 2xy + y^{2})(x + y) = x^{3} + x^{2}y + 2x^{2}y + 2xy^{2} + xy^{2} + 1$$

= $x^{3} + 3x^{2}y + 3xy^{2} + 1$

Thus, the answer is **D**.

Multiplying Polynomials VII

Expand:

$$(x - y)^5$$

A.
$$x^{5} + 5x^{4} - 5y^{4} - y^{5}$$

B. $x^{5} + 5x^{4} + 10x^{3}y^{2} - 5y^{4} - y^{5}$
C. $-x^{5} - 5x^{4}y - 10x^{3}y^{2} - 10x^{2}y^{3} - 5x^{1}y^{4} - y^{5}$
D. $x^{5} - 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} - 5x^{1}y^{4} - y^{5}$
E. $x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}$

Answer: E

Justification:

We can solve this problem by using Pascal's triangle

Pascal's triangle is a triangular model that starts with 1 at the top, continues to place number below in a triangular shape, and has pattern that each number of a row is the two numbers above added together excluding the edges.

It is found that $(n + 1)^{th}$ row of the Pascal's triangle represents the coefficients of the terms in a polynomial $(x + y)^n$, where n is a positive integer.

Solution Continued

Since n = 5 for our example, we know that the coefficients of the terms of $(x - y)^5$ are at the 6th row of the Pascal's triangle. (1)

However, we have a negative sign between x and y: $(x - y)^5$

This means that each term will have an alternating sign in a descending order from the first term. (2)

For example, when we have $(x - y)^2$, we should get: $x^2 - 2xy + y^2$. As you can see, the coefficients of these terms are +1, -2, and +1, respectively. They alternate sign as they progress.

Solution Continued

Thus, incorporating both (1) and (2), our solution will look as below:

$$x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}$$

Thus, our answer is E.

Retrieved from http://en.wikipedia.org/wiki/Pascal's_triangle#/media/File:Pascal%27s_triangle_5.svg