a place of mind

FACULTY OF EDUCATION
Department of
Curriculum and Pedagogy

Mathematics

Functions and Relations:

 Exponential FunctionsScience and Mathematics Education Research Group

Exponential Functions

Exponential Functions I

What is the domain and range for this exponential function?

$$
y=2^{x}
$$

A. $\{x \mid x \in R\},\{y \mid y \geq 2, y \in Z\}$
B. $\{x \mid x \in R\},\{y \mid y \geq 0, y \in Z\}$
C. $\{x \mid x \in R\},\{y \mid y \geq 0, y \in R\}$
D. $\{x \mid x \in R\},\{y \mid y>0, y \in R\}$
E. $\{x \mid x \in R\},\{y \mid y \in R\}$

Solution

Answer: D

Justification: For $y=2^{x}$, there is no restriction that prohibits what x could be. Therefore, the domain of x is: $x \in R$.

For our range, when x is a positive number, y should also be positive.

When $x=0, y$ is 1 as the exponents rule:

We can also see that there is no value of x that will give us $y=0$.

Solution Continued

Thus, since our y values will always be greater than 0 for all x values, we know that all the y values for $y=2^{x}$ will always be above the x axis, creating the horizontal asymptote of $y=0$.

Exponential Functions II

Which of the following graphs corresponds to $f(x)=0.5^{x}$?
A.

B.

C.

D.

Solution

Answer: C

Justification: From the previous problem, we know that there is no x-intercept. Our y-intercept is $(0,1)$. y-intercept $f(0)=0.5^{0}$

$$
=1
$$

$$
\begin{aligned}
& \text { Note: } 0.5=\frac{1}{2} \text { and so } \\
& f(x)=0.5^{x}=\frac{1^{x}}{2^{x}}=\frac{1}{2^{x}}=2^{-x} \\
& \text { When } x \rightarrow-\infty, y \rightarrow \infty \text { and } \\
& \text { also when } x \rightarrow \infty, y \rightarrow 0 . \\
& \qquad \text { approaches }
\end{aligned}
$$

Now we know that as x increases, then y decreases. The only trend that displays these two facts is C . Thus, our answer is C .

Exponential Functions III

Which of the following graphs corresponds to $f(x)=0.5^{-x}$?
A.

B.

C.

D.

Solution

Answer: D

Justification: From the previous problem, we know that there is no x-intercept. Our y-intercept is $(0,1)$.
y-intercept

$$
\begin{aligned}
f(0) & =0.5^{0} \\
& =1
\end{aligned}
$$

Note: $0.5=\frac{1}{2}$ and so
$f(x)=0.5^{-x}=\frac{1^{-x}}{2^{-x}}=\frac{1}{2^{-x}}$
$f(x)=2^{x}$
When $x \rightarrow-\infty, y \rightarrow 0$ and also when $x \rightarrow \infty, y \rightarrow \infty$.

Now we know that as x increases, y increases as well. The only trend that displays these two facts is D . Thus, our answer is D .

Exponential Functions IV

Which of the following equations corresponds to the graph below?

A. $y=2^{x}+1$
B. $y=2^{-x}+1$
C. $y=3^{x}+1$
D. $y=3^{-x}+1$
E. $y=4^{x}+1$

Solution

Answer: C

Justification: First, notice that we have applied transformations (vertical translation) to the exponential functions for creating our new functions. In our case, every exponential function is shifted vertically by +1 unit. As a result of the vertical shift, the horizontal asymptote has moved from $y=0$ to $y=1$. (1)
Second, our graph represents a function that is increasing. A function is increasing on an interval, if for any x_{1} and x_{2} in the interval then $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$. Thus, B and D cannot be our answer since these two functions are decreasing functions. A function is decreasing on an interval, if for any x_{1} and x_{2} in the interval then $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$. (2)

Solution Continued

Third, the y-intercept is $(0,2)$ and another point on the graph is $(2,10)$ (this point was chosen because it was easy to read the values off the graph). That is, when $x=2, y=3^{2}+1=10$. (3)

Consequently, the option that satisfies (1), (2), and (3) is C. Thus, our answer is C.

Exponential Functions V

Titanium 44 or Ti-44 is an important radioactive isotope that is produced in significant quantities during the core-collapse of supernovae. Ti-44 has a half-life of 60 years and decays by electron capture. If you begin with a sample of N_{0} quantity (measured in grams, moles, etc.) of Ti-44, what exponential function, $N(t)$, can be used to represent the radioactive decay of Ti-44 after some time t ?
A. $N(t)=\frac{1}{2} N_{0}{ }^{60 t}$
B. $N(t)=\frac{1}{2} N_{0}^{(60 / t)}$
C. $N(t)=\frac{1}{2} N_{0}^{(t / 60)}$
D. $N(t)=N_{0}\left(\frac{1}{2}\right)^{(60 / t)}$
E. $N(t)=N_{0}\left(\frac{1}{2}\right)^{(t / 60)}$

Solution

Answer: E

Justification: Ti-44 has a half-life of 60 years and decays by electron capture. This means that after 60 years, a sample of Ti-44 will have lost one half of its original radioactivity.

In general, exponential decay processes can be described by $N(t)=N_{0} e^{-\lambda t}$ or $N(t)=N_{0}\left(\frac{1}{2}\right)^{\left(t / t_{1 / 2}\right)}$, where t is the time, $t_{1 / 2}$ is the half-life of the decaying quantity, $N(t)$ is the remaining quantity (not yet decayed) after time t, N_{0} is the initial quantity (when $t=0$) of the substance, and λ is a positive number called the decay constant.

Solution

Answer: E

Options A and C: $N(t)=\frac{1}{2} N_{0}{ }^{60 t}$ and $N(t)=\frac{1}{2} N_{0}{ }^{(t / 60)}$. When $t \rightarrow \infty, N(t) \rightarrow \infty$, which means that A and C describe exponential growths.

Option B: $N(t)=\frac{1}{2} N_{0}{ }^{(60 / t)}$. When $t \rightarrow \infty, \frac{60}{t} \rightarrow 0$, which means that $N_{0}{ }^{(60 / t)} \rightarrow N_{0}{ }^{(0)} \rightarrow 1$. That is, $N(t) \rightarrow \frac{1}{2}$.

Option D: $N(t)=N_{0}\left(\frac{1}{2}\right)^{(60 / t)}$. When $t \rightarrow \infty, \frac{60}{t} \rightarrow 0$, which means that $\left(\frac{1}{2}\right)^{(60 / t)} \rightarrow\left(\frac{1}{2}\right)^{(0)} \rightarrow 1$. That is, $N(t) \rightarrow N_{0}$.

Solution

Answer: E

Option E: $N(t)=N_{0}\left(\frac{1}{2}\right)^{(t / 60)}$. When $t \rightarrow \infty, \frac{t}{60} \rightarrow \infty$, which means that $\left(\frac{1}{2}\right)^{(t / 60)} \rightarrow\left(\frac{1}{2}\right)^{(\infty)} \rightarrow 0$. That is, $N(t) \rightarrow 0$.

Note that in options A, B, C, and D, N(t) does not approach 0.
Remember, in an exponential decay, the remaining quantity, $N(t)$, of a substance approaches zero as t approaches infinity.

Thus, \mathbf{E} is the correct answer.
Ti- 44: http://astro.triumf.ca/publications/categories/titanium-44
Half-life: https://en.wikipedia.org/wiki/Half-life

Exponential Functions VI

Customers of the Bank of Montreal (BMO) can open savings account to earn interest on their investments at an annual interest rate of 0.75%, compounded monthly. If your initial investment with BMO is P_{0}, what exponential function, $P(t)$, can be used to represent the future value of your investment? Let t be the number of years your investment is left in the bank.
A. $P(t)=1.0075 P_{0}^{12 t}$
B. $P(t)=1+\left(0.0075 P_{0}\right)^{12 t}$
C. $P(t)=P_{0}(1.0075)^{12 t}$
D. $P(t)=1+P_{0}(0.0075)^{12 t}$
E. $P(t)=P_{0}^{12 t}+1.0075 P_{0}$

Solution

Answer: C
Justification: There are several ways to earn interest on the money you deposit in a bank. If the interest is calculated once a year, then the interest is called a simple interest. If the interest is calculated more than once a year, then it is called a compound interest.

In our case, it will be a 0.75% annual interest rate compounded monthly. That is, the interest will be compounded 12 times per year.

Options A and E: $P(t)=1.0075 P_{0}{ }^{12 t}$ and $P(t)=P_{0}{ }^{12 t}+1.0075 P_{0}$. These two options are too good to be true. Imagine if you were to invest $\$ 100$ with BMO, then by the end of the first year, you would have made more than a septillion dollars (more than 10^{24}).

Solution

Answer: C
Options B and D: $P(t)=1+\left(0.0075 P_{0}\right)^{12 t}$ and $P(t)=1+$
$P_{0}(0.0075)^{12 t}$. You will lose your investment with these two options. Imagine if you were to invest $\$ 100$ with BMO, then by the end of the first year and beyond, you would have lost \$99. In fact, over time (5, 10 , or more years later), your investment would only be worth $\$ 1$.

Thus, \mathbf{C} is the correct answer. Check the table below:

Year	$\boldsymbol{P}_{\mathbf{0}}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	E
1	$\$ 100$	$\$ 10^{24}$	$\$ 1.03$	$\$ 109.38$	$\$ 1.00$	$\$ 10^{24}$
2	$\$ 100$	$\$ 10^{48}$	$\$ 1.00$	$\$ 119.64$	$\$ 1.00$	$\$ 10^{48}$
3	$\$ 100$	$\$ 10^{72}$	$\$ 1.00$	$\$ 130.86$	$\$ 1.00$	$\$ 10^{72}$
4	$\$ 100$	$\$ 10^{96}$	$\$ 1.00$	$\mathbf{\$ 1 4 3 . 1 4}$	$\$ 1.00$	$\$ 10^{96}$

Extend Your Learning with Desmos

Desmos graphing calculator: https://www.desmos.com/

Desmos is a free and intuitive tool to help students experience functions. We recommend it to you!

